首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   136篇
  免费   1篇
  137篇
  2023年   4篇
  2021年   4篇
  2020年   1篇
  2019年   4篇
  2018年   1篇
  2016年   2篇
  2015年   1篇
  2014年   1篇
  2013年   9篇
  2012年   6篇
  2011年   5篇
  2009年   3篇
  2008年   6篇
  2007年   3篇
  2006年   3篇
  2005年   2篇
  2004年   1篇
  2002年   3篇
  2001年   1篇
  1999年   1篇
  1998年   2篇
  1996年   6篇
  1995年   3篇
  1994年   6篇
  1993年   5篇
  1992年   3篇
  1991年   7篇
  1990年   1篇
  1989年   7篇
  1988年   5篇
  1987年   3篇
  1986年   2篇
  1985年   3篇
  1984年   7篇
  1983年   1篇
  1978年   4篇
  1977年   3篇
  1976年   2篇
  1973年   1篇
  1972年   2篇
  1970年   3篇
排序方式: 共有137条查询结果,搜索用时 15 毫秒
41.
The formation of secretory granules in chronically hypersecretory melanotrophs in the rat pituitary was studied. Hypersecretion was induced by treatment with the dopamine antagonist haloperidol (1.5 mg/kg daily for 7 days), which releases the normal neural dopaminergic inhibition of secretion from the melanotroph. Morphometric analysis showed a 100% increase in the volume fraction of granular endoplasmic reticulum after haloperidol treatment, while the volume fractions of electron-dense granules, electron-lucent granules and the Golgi apparatus were unaltered. The mean diameter of the mature secretory granules was increased by 10%, indicating a 30% increase in mean granule volume. A similar increase in diameter was observed in condensing granules within the Golgi area. With earlier results on the effect of chronic inhibition the study shows that a main adaptive response of the melanotroph to altered secretory conditions is a change in the volume of the secretory granules, regulated by a mechanism that operates at an early stage of granule formation.  相似文献   
42.
Sexual differentiation and lateralization of neurone number in a discrete forebrain nucleus (SDApc) related to masculine vocal emission, occur contemporaneously in postnatal (P0–P15) gerbils. Stereological estimates of cell proliferation and death during SDApc organization were made by BrdU labelling and pyknosis, respectively. Results confirmed that rates of apoptosis were greater in females and lateralized in males. Immunoreactive BrdU cells, located in the SDApc at P0–P6, with low levels at P15, were not numerically different between the sexes. Only at one age, P0, in males, was a left‐right difference seen in BrdU‐immunoreactive cell numbers. Microglia, identified by isolectin immunostaining, were numerically similar to BrdU cells. We suggest that apoptosis, rather than neurogenesis, differentiates and lateralizes SDApc organization, and proliferating cells are microglia, phagocytosing debris. © 2001 John Wiley & Sons, Inc. J Neurobiol 47: 150–158, 2001  相似文献   
43.
Summary Laminin (LAM), a glycoprotein component of basement membranes, has been previously detected within several subcellular compartments of prolactin (PRL) cells in the pituitary gland. The present work was aimed at comparing the subcellular localization of PRL, a specific secretory product, with that of LAM, in relation to the secretory activity of PRL cells. LAM and PRL were located in parallel, by ultrastructural immunocytochemistry, in PRL cells of lactating female Wistar rats, either stimulated by suckling, or blocked by weaning, or reactivated by suckle following short-term weaning. Variations in physiological conditions were correlated with a redistribution of PRL immunoreactivity within morphologically modified compartments. The Golgi apparatus became hypertrophied, and PRL impressively accumulated within saccules of the Golgi stacks of blocked cells. On the contrary, no apparent changes occurred in LAM distribution, at least at the Golgi level. Only a slight increase of LAM immunoreactivity was observed in rough endoplasmic reticulum after a long weaning period. PRL could be detected in most of the secretory granules and particularly in forming elements, whereas LAM was observable at the peripheral edge of some mature granules. Such a labeling was not markedly influenced by the physiological state. The prominent structures, indicative of crinophagic activity, characteristic of blocked cells, contained masses of dense material, which were always immunopositive with antibodies to PRL, but never to LAM. These observations could suggest that, in PRL cells, intracellular transport and exportation of LAM are controlled by mechanisms independent from those involved in the regulation of PRL secretion.  相似文献   
44.
Summary S-100 protein-immunoreactive cells were demonstrated by immunocytochemical procedures in the hypophysis and saccus vasculosus of two species of elasmobranchs (Mustelus manazo and Scyliorhinus torazame). In the saccus vasculosus of M. manazo, immunoreactivity was detectable exclusively in the fibrous portions interposed between the epithelial layer and the blood vessels. In the neurohypophysis, tanycytes and astrocytes of the median eminence were immunostained, but only a few labeled cells were found in the neurointermediate lobe. In S. torazame, the neurohypophysis displayed a similar distribution of immunoreactivity, but there were no labeled cells in the saccus vasculosus. In both species, none of the glandular cells of the hypophysis displayed immunoreactivity. Electron-microscopic examination showed that the immunostained cells in the saccus vasculosus correspond to astrocytes.  相似文献   
45.
The distribution of neuropeptide Y-like immunoreactivity in the brain and hypophysis of the brown hagfish, Paramyxine atami, was examined by use of the peroxidase-antiperoxidase method. Immunoreactive cells were found in two areas of the brain, the nucleus hypothalamicus of the diencephalon and the ventrolateral area of the caudal tegmentum, at the level of the nucleus motorius V–VII. The labeled cells of the nucleus hypothalamicus were loosely grouped and recognized as bipolar neurons. Immunolabeled fibers were widely distributed in the brain, showing the highest density in the diencephalon. They were sparse, or absent, in the olfactory bulb, habenula, primordium hippocampi, neurohypophysis, corpus interpedunculare, and dorsolateral area of the medulla oblongata. The fibers appeared to project exclusively from the ventral hypothalamus to various other portions of the brain: the anterolateral areas of the telencephalon via the basal hypothalamus, the pars dorsalis thalami, the dorsocaudal region of the mesencephalon, and the ventromedial portions of the tegmentum and anterior medulla oblongata. These findings suggest that, in the brown hagfish, NPY-like substance is involved in neuroregulation of various cerebral areas, but it may be of little significance in the control of pituitary function.  相似文献   
46.
Several members of the tetrahydroisoquinoline (TIQ) family of monoamine alkaloids can be formed from dopamine or its oxidized metabolites and may be involved in the pathogenesis of monoaminergic cell death in Parkinson’s disease (PD). Using enantiomeric‐selective high‐performance liquid chromatography with electrochemical detection and liquid chromatography with tandem mass spectroscopy, the regional concentrations of several TIQ derivatives, including salsolinols, were determined in mouse, rat, normal human, and PD brain. TIQ derivatives were detected in all regions subjected to analysis. In general, salsolinols were present at higher concentrations than TIQ and its benzyl and methyl derivatives, especially in human brain. Moreover, salsolinols were concentrated in areas with increased dopamine synthesis and turnover such as the ventral midbrain and striatum, respectively. A possible consequence of nigrostriatal dopaminergic cell death, significantly lower levels of (R)salsolinol, (S)salsolinol, N‐methyl‐(R)salsolinol and N‐methyl‐(S)salsolinol were found in the caudate nuclei of PD in comparison with normal human brain. Our data support the hypothesis of endogenous synthesis of salsolinols and provide evidence for their accumulation in catecholaminergic neurons.  相似文献   
47.
Previous electron microscopic observations have shown that the acrosome of the sperm of the frog, Xenopus laevis, comprises a membrane-bounded vesicle covering the anterior-most position of the head. We obtained a sperm suspension from the testes and stained it with LysoSensor Green for observation under a confocal laser scanning microscope and found a bright fluorescence reflecting the presence of the acrosomes at the top of the sperm head in about 64% of the sperm, with no deterioration of their capacity to fertilize. About 40% of the sperm with an acrosome underwent an acrosome reaction in response to Ca(2+) ionophore A23187, as evidenced by a loss of LysoSensor Green stainability, accompanied by breakdown of the acrosomal vesicle. About 53% of the sperm bound to isolated vitelline envelopes underwent an acrosome reaction, whereas both jelly water and solubilized vitelline envelopes weakly induced an acrosome reaction. When the sperm were treated with an oviductal extract obtained from the pars recta, but not the pars convoluta region, about 40% of the sperm with acrosomes underwent an acrosome reaction. The substance containing acrosome reaction-inducing activity in the pars recta extract seemed to be a heat-unstable substance with a molecular weight of greater than 10 kDa. The activity was not inhibited by protease inhibitors but required extracellular Ca(2+) ions. These results indicate that the acrosome reaction occurs on the vitelline envelopes in response to the substance deposited from the pars recta during the passage of the oocytes through the oviduct.  相似文献   
48.
The exact pathogenesis of Parkinson's disease (PD) is still unknown and proper mechanisms that correspond to the disease remain unidentified. It is understood that PD is age-related; as age increases, the chance of onset responds accordingly. Although there are no current means of curing PD, the understanding of reactive oxygen species (ROS) provides significant insight to possible treatments. Complex I deficiencies of the respiratory chain account for the majority of unfavorable neural apoptosis generation in PD. Dopaminergic neurons are severely damaged as a result of the deficiency. Symptoms such as inhibited cognitive ability and loss of smooth motor function are the results of such impairment. The genetic mutations of Parkinson's related proteins such as PINK1 and LRRK2 contribute to mitochondrial dysfunction which precedes ROS formation. Various pathways are inhibited by these mutations, and inevitably causing neural cell damage. Antioxidants are known to negate the damaging effects of free radical overexpression. This paper expands on the specific impact of mitochondrial genetic change and production of free radicals as well as its correlation to the neurodegeneration in Parkinson's disease.  相似文献   
49.
Summary Electron microscopic localization of adrenocorticotropin (ACTH) and melanocyte stimulating hormone (MSH) in light, dark and ACTH cells in the pars intermedia (PI) of rats and mice is attempted by using antisera to p 1–24, p 17–39 ACTH and b MSH with the immunoglobulin-peroxidase bridge technique. All of the PI parenchymatous cells (light, dark and ACTH cells), except the marginal cuboidal and the ependymal like cells, in rats and mice show very good localization of ACTH and MSH staining. In the light and dark cells, stain of varying intensity is seen on the secretory granules, vesicles and also in many places on the surface of the rough endoplasmic reticulum. There is no staining on the mitochondria, in the nuclei or in the granules inside and around the cisternae of the Golgi complex. Dark stained dense core granules become larger and larger as they appear farther and farther away from the Golgi complex. On the other hand, in the ACTH cells of the PI, ACTH antisera show stronger stained granules in the Golgi complex including the cisternae, similar to the pars distalis (PD) ACTH cells. From these observations it is concluded that the corticotropin in light and dark cells, is not packaged or condensed in the Golgi complex like that in the ACTH cells. MSH synthesis in light and dark cells also seems to be similar to that of ACTH synthesis. It is likely that the granules accumulate ACTH and MSH secretions after they are liberated from the Golgi cisternae, and thus become bigger and bigger in size. In case of ACTH cells of PI and PD, corticotropin may be packaged in Golgi cisternae and the size of the granule does not change much. This shows that there are distinct immunocytochemical differences between the light, dark and ACTH cells of the PI. At the moment, it is difficult to say whether ACTH and MSH are present in the same granule or not.The present and previous studies show that the ACTH and MSH secretion in the PI of rats and mice depends on the hypothalamic neural control.This study was supported by MRC of Canada Grant nos. MA-3759, and MA-5160.The author gratefully wishes to thank Drs. P. Desaulles and W. Rittel (CIBA, Basle, Switzerland) for the synthetic p 1–24 ACTH and b MSH, Dr. R. F. Phifer for p 17–39 ACTH, and Dr. S. S. Spicer for providing samples of rabbit anti-porcine 17–39 ACTH and anti-human ACTH sera, Drs. George Sétáló and Paul Nakane for their valuable advice. He also acknowledge the help of Mr. Shankar Nayak to prepare the antisera and the skilful technical assistance of Miss. Elise Poiré. He wishes to acknowledge Mr. Gatson Lambert for his photography.  相似文献   
50.
A study of prolactin-mRNA expression in the hypophysis of male and female Typhlonectes compressicaudus was carried out, using a quantitative in situ hybridization technique. In both males and females, an increase in the number of cells showing prolactin-like expression was observed at the beginning of the dry season. In the middle of the season, this number decreased. In pregnant females, mRNA expression remained constant during the first stages of gestation but, in the final stages, when embryos reached their maximum development, mRNA expression increased. In males and in sexually inactive females, prolactin-mRNA expression was the same throughout the year. We conclude that the activity of cells expressing prolactin could be related to hydromineral regulation and, in females, to the gestation process.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号