全文获取类型
收费全文 | 2045篇 |
免费 | 178篇 |
国内免费 | 85篇 |
专业分类
2308篇 |
出版年
2024年 | 3篇 |
2023年 | 29篇 |
2022年 | 29篇 |
2021年 | 49篇 |
2020年 | 47篇 |
2019年 | 49篇 |
2018年 | 48篇 |
2017年 | 54篇 |
2016年 | 64篇 |
2015年 | 63篇 |
2014年 | 81篇 |
2013年 | 143篇 |
2012年 | 67篇 |
2011年 | 68篇 |
2010年 | 56篇 |
2009年 | 79篇 |
2008年 | 105篇 |
2007年 | 83篇 |
2006年 | 88篇 |
2005年 | 99篇 |
2004年 | 90篇 |
2003年 | 95篇 |
2002年 | 92篇 |
2001年 | 64篇 |
2000年 | 33篇 |
1999年 | 39篇 |
1998年 | 82篇 |
1997年 | 69篇 |
1996年 | 37篇 |
1995年 | 36篇 |
1994年 | 50篇 |
1993年 | 35篇 |
1992年 | 28篇 |
1991年 | 23篇 |
1990年 | 28篇 |
1989年 | 23篇 |
1988年 | 17篇 |
1987年 | 17篇 |
1986年 | 12篇 |
1985年 | 23篇 |
1984年 | 27篇 |
1983年 | 19篇 |
1982年 | 26篇 |
1981年 | 14篇 |
1980年 | 7篇 |
1979年 | 7篇 |
1978年 | 2篇 |
1977年 | 3篇 |
1976年 | 2篇 |
1973年 | 2篇 |
排序方式: 共有2308条查询结果,搜索用时 13 毫秒
131.
Hasan A Yu J Smith DL Smith JB 《Protein science : a publication of the Protein Society》2004,13(2):332-341
The alpha-crystallins, alphaA and alphaB, are major lens structural proteins with chaperone-like activity and sequence homology to small heat-shock proteins. As yet, their crystal structures have not been determined because of the large size and heterogeneity of the assemblies they form in solution. Because alpha-crystallin chaperone activity increases with temperature, understanding structural changes of alpha-crystallin as it is heated may help elucidate the mechanism of chaperone activity. Although a variety of techniques have been used to probe changes in heat-stressed alpha-crystallin, the results have not yet yielded a clear understanding of chaperone activity. We report examination of native assemblies of human lens alpha-crystallin using hydrogen/deuterium exchange in conjunction with enzymatic digestion and analysis by mass spectrometry. This technique has the advantage of sensing structural changes along much of the protein backbone and being able to detect changes specific to alphaA and alphaB in the native assembly. The reactivity of the amide linkages to hydrogen/deuterium exchange was determined for 92% of the sequence of alphaA and 99% of alphaB. The behavior of alphaA and alphaB is remarkably similar. At low temperatures, there are regions at the beginning of the alpha-crystallin domains in both alphaA and alphaB that have high protection to isotope exchange, whereas the C termini offer little protection. The N terminus of alphaA also has low protection. With increasing temperatures, both proteins show gradual unfolding. The maximum percent change in exposure with increasing temperatures was found in alphaA 72-75 and alphaB 76-79, two regions considered critical for chaperone activity. 相似文献
132.
In the Kv2.1 potassium channel, binding of K(+) to a high-affinity site associated with the selectivity filter modulates channel sensitivity to external TEA. In channels carrying Na(+) current, K(+) interacts with the TEA modulation site at concentrations =30 microM. In this paper, we further characterized the TEA modulation site and examined how varying K(+) occupancy of the pore influenced the interaction of K(+) with this site. In the presence of high internal and external [K(+)], TEA blocked 100% of current with an IC(50) of 1.9 +/- 0.2 mM. In the absence of a substitute permeating ion, such as Na(+), reducing access of K(+) to the pore resulted in a reduction of TEA efficacy, but produced little or no change in TEA potency (under conditions in which maximal block by TEA was just 32%, the IC(50) for block was 2.0 +/- 0.6 mM). The all-or-none nature of TEA block (channels were either completely sensitive or completely insensitive), indicated that one selectivity filter binding site must be occupied for TEA sensitivity, and that one selectivity filter binding site is not involved in modulating TEA sensitivity. At three different levels of K(+) occupancy, achieved by manipulating access of internal K(+) to the pore, elevation of external [K(+)] shifted channels from a TEA-insensitive to -sensitive state with an EC(50) of approximately 10 mM. Combined with previous results, these data demonstrate that the TEA modulation site has a high affinity for K(+) when only one K(+) is in the pore and a low affinity for K(+) when the pore is already occupied by K(+). These results indicate that ion-ion interactions occur at the selectivity filter. These results also suggest that the selectivity filter is the site of at least one low affinity modulatory effect of external K(+), and that the selectivity filter K(+) binding sites are not functionally interchangeable. 相似文献
133.
Effects of ligand binding on the stability of aldo–keto reductases: Implications for stabilizer or destabilizer chaperones 下载免费PDF全文
Aurangazeb Kabir Ryo P. Honda Yuji O. Kamatari Satoshi Endo Mayuko Fukuoka Kazuo Kuwata 《Protein science : a publication of the Protein Society》2016,25(12):2132-2141
Ligands such as enzyme inhibitors stabilize the native conformation of a protein upon binding to the native state, but some compounds destabilize the native conformation upon binding to the non‐native state. The former ligands are termed “stabilizer chaperones” and the latter ones “destabilizer chaperones.” Because the stabilization effects are essential for the medical chaperone (MC) hypothesis, here we have formulated a thermodynamic system consisting of a ligand and a protein in its native‐ and non‐native state. Using the differential scanning fluorimetry and the circular dichroism varying the urea concentration and temperature, we found that when the coenzyme NADP+ was absent, inhibitors such as isolithocholic acid stabilized the aldo–keto reductase AKR1A1 upon binding, which showed actually the three‐state folding, but destabilized AKR1B10. In contrast, in the presence of NADP+, they destabilized AKR1A1 and stabilized AKR1B10. To explain these phenomena, we decomposed the free energy of stabilization (ΔΔG) into its enthalpy (ΔΔH) and entropy (ΔΔS) components. Then we found that in a relatively unstable protein showing the three‐state folding, native conformation was stabilized by the negative ΔΔH in association with the negative ΔΔS, suggesting that the stabilizer chaperon decreases the conformational fluctuation of the target protein or increase its hydration. However, in other cases, ΔΔG was essentially determined by the delicate balance between ΔΔH and ΔΔS. The proposed thermodynamic formalism is applicable to the system including multiple ligands with allosteric interactions. These findings would promote the development of screening strategies for MCs to regulate the target conformations. 相似文献
134.
Komandoor E. Achyuthan Ann Mary Robin Bhaermani Charles S. Greenberg 《Molecular and cellular biochemistry》1989,85(1):57-65
Calcium ions are crucial for expression of transglutaminase activity. Although lanthanides have been reported to substitute for calcium in a variety of protein functions, they did not replace the calcium requirement during transglutaminase activity measurements. Furthermore, lanthanides strongly inhibited purified liver transglutaminase activity using either casein or fibrinogen as substrates. Terbium (III) inhibition of transglutaminase-catalyzed putrescine incorporation into casein was not reversed by the presence of 10–200 fold molar excess of calcium ions (Ki for Tb(III)=60 µM). Conformational changes in purified liver transglutaminase upon Tb(III) binding were evident from a biphasic effect of Tb(III) on transglutaminase binding to fibrin. Low concentrations of Tb(III) (1 µM to 10 µM inhibited the binding of transglutaminase to fibrin, whereas higher concentrations (20 µM to 100 µM promoted binding. Conformational changes in purified liver transglutaminase consequent to Tb(III) binding were also demonstrated by fluorescence spectroscopy due to Forster energy transfer. Fluorescence emission was stable to the presence of 200 mM NaCl and 100 mM CaCl2 only partially quenched emission. Purified liver transglutaminase strongly bound to Tb(III)-Chelating Sepharose beads and binding could not be disrupted by 100 mM CaCl2 solution. Our data suggest that Tb(III)-induced conformational changes in transglutaminase are responsible for the observed effects on enzyme structure and function. The potential applications of Tb(III)-transglutaminase interactions in elucidating the structure-function relationships of liver transglutaminase are discussed. 相似文献
135.
Thermal stability and conformational transitions of scrapie amyloid (prion) protein correlate with infectivity. 总被引:7,自引:1,他引:7 下载免费PDF全文
J. Safar P. P. Roller D. C. Gajdusek C. J. Gibbs Jr 《Protein science : a publication of the Protein Society》1993,2(12):2206-2216
The scrapie amyloid (prion) protein (PrP27-30) is the protease-resistant core of a larger precursor (PrPSc) and a component of the infectious scrapie agent; the potential to form amyloid is a result of posttranslational event or conformational abnormality. The conformation, heat stability, and solvent-induced conformational transitions of PrP27-30 were studied in the solid state in films by CD spectroscopy and correlated with the infectivity of rehydrated and equilibrated films. The exposure of PrP27-30 in films to 60 degrees C, 100 degrees C, and 132 degrees C for 30 min did not change the beta-sheet secondary structure; the infectivity slightly diminished at 132 degrees C and correlated with a decreased solubility of PrP27-30 in sodium dodecyl sulfate (SDS), probably due to cross-linking. Exposing PrP27-30 films to formic acid (FA), trifluoroacetic acid (TFA), trifluoroethanol (TFE), hexafluoro-2-propanol (HFIP), and SDS transformed the amide CD band, diminished the mean residue ellipticity of aromatic bands, and inactivated scrapie infectivity. The convex constraint algorithm (CAA) deconvolution of the CD spectra of the solvent-exposed and rehydrated solid state PrP27-30 identified five common spectral components. The loss of infectivity quantitatively correlated with a decreasing proportion of native, beta-pleated sheet-like secondary structure component, an increasing amount of alpha-helical component, and an increasingly disordered tertiary structure. The results demonstrate the unusual thermal stability of the beta-sheet secondary structure of PrP27-30 protein in the solid state. The conformational perturbations of PrP27-30 parallel the changes in infectivity and suggest that the beta-sheet structure plays a key role in the physical stability of scrapie amyloid and in the ability to propagate and replicate scrapie. 相似文献
136.
Adult human bone marrow stromal cells (BMSCs) containing or consisting of mesenchymal stem cells (MSCs) are an important source in tissue homeostasis and repair. Although many processes involved in their differentiation into diverse lineages have been deciphered, substantial inroads remain to be gained to synthesize a complete regulatory picture. The present study suggests that structural conformation of extracellular collagen I, the major organic matrix component in musculoskeletal tissues, plays, along with differentiation stimuli, a decisive role in the selection of differentiation lineage. It introduces a novel concept which proposes that structural transition of collagen I matrix regulates cell differentiation through distinct signaling pathways specific for the structural state of the matrix. Thus, on native collagen I matrix inefficient adipogenesis is p38-independent, whereas on its denatured counterpart, an efficient adipogenesis is primarily regulated by p38 kinase. Inversely, osteogenic differentiation occurs efficiently on native, but not on denatured collagen I matrix, with a low commencement threshold on the former and a substantially higher one on the latter. Osteogenesis on collagen I matrices in both structural conformations is fully dependent on ERK. However, whereas on native collagen I matrix osteogenic differentiation is Hsp90-dependent, on denatured collagen I matrix it is Hsp90-independent. The matrix conformation-mediated regulation appears to be one of the mechanisms determining differentiation lineage of BMSCs. It allows a novel interpretation of the bone remodeling cycle, explains the marked physiological aging-related adipogenic shift in musculoskeletal tissues, and can be a principal contributor to adipogenic shift seen in a number of clinical disorders. 相似文献
137.
Despite the fact that link between dyslipidemia and atherosclerosis was made over 100 years ago, atherosclerosis remains a major cause of morbidity and mortality worldwide. Major efforts focus towards understanding lipid metabolism, particularly by studying its particle compartments in circulation: the lipoproteins. In recent years, mass spectrometry has played an integral role in the deep sequencing of the lipoproteome and in metabolism studies conducted in vivo. This review highlights the path of lipoprotein research towards state-of-the-art mass spectrometry with special emphasis on the method of selected reaction monitoring and its impact on apolipoprotein metabolism studies. Also presented is what is expected for the lipoprotein field with the recent advent of high resolution/accurate mass parallel reaction monitoring mass spectrometry. The benefits of high resolution/accurate mass measurements are demonstrated by example instrument workflows and by detailing a novel method to quantify very low levels of circulating proprotein convertase subtilisin-kexin type 9 in rabbit. It is anticipated that future clinical studies or clinical trials aimed to treat dyslipidemia by manipulating key regulatory proteins will benefit from the new and exciting opportunities afforded by the latest technologies in mass spectrometry. 相似文献
138.
Richard Kozack Kwang-Young Seo Scott A. Jelinsky Edward L. Loechler 《Mutation research》2000,450(1-2)
The process of carcinogenesis is initiated by mutagenesis, which often involves replication past damaged DNA. One question — what exactly is a DNA polymerase seeing when it incorrectly copies a damaged DNA base (e.g., inserting dATP opposite a dG adduct)? — has not been answered in any case. Herein, we reflect on this question, principally by considering the mutagenicity of one activated form of benzo[a]pyrene, (+)-anti-B[a]PDE, and its major adduct [+ta]-B[a]P-N2-dG. In previous work, [+ta]-B[a]P-N2-dG was shown to be capable of inducing>95% G→T mutations in one sequence context (5′-T
C), and 95% G→A mutations in another (5′-A
A). This raises the question — how can a single chemical entity induce different mutations depending upon DNA sequence context? Our current working hypothesis is that adduct conformational complexity causes adduct mutational complexity, where DNA sequence context can affect the former, thereby influencing the latter. Evidence supporting this hypothesis was discussed recently (Seo et al., Mutation Res. [in press]). Assuming this hypothesis is correct (at least in some cases), one goal is to consider what these mutagenic conformations might be. Based on molecular modeling studies, 16 possible conformations for [+ta]-B[a]P-N2-dG are proposed. A correlation between molecular modeling and mutagenesis work suggests a hypothesis (Hypothesis 3): a base displaced conformation with the dG moiety of the adduct in the major vs. minor groove gives G→T vs. G→A mutations, respectively. (Hypothesis 4, which is a generalized version of Hypothesis 3, is also proposed, and can potentially rationalize aspects of both [+ta]-B[a]P-N2-dG and AP-site mutagenesis, as well as the so-called “A-rule”.) Finally, there is a discussion of how conformational complexity might explain some unusual mutagenesis results that suggest [+ta]-B[a]P-N2-dG can become trapped in different conformations, and why we think it makes sense to interpret adduct mutagenesis results by modeling ds-DNA (at least in some cases), even though the mutagenic event must occur at a ss/ds-DNA junction in the presence of a DNA polymerase. 相似文献
139.
Drennan MJ McGee M Keane MG 《Animal : an international journal of animal bioscience》2008,2(5):752-760
The objective was to determine the relationship of muscular and skeletal scores taken on the live animal and carcass conformation and fat scores with carcass composition and value. Bulls (n = 48) and heifers (n = 37) of 0.75 to 1.0 late-maturing breed genotypes slaughtered at 16 and 20 months of age, respectively, were used. At 8 months of age (weaning) and immediately pre-slaughter, visual muscular scores were recorded for each animal and additionally skeletal scores were recorded pre-slaughter. Carcass weight, kidney and channel fat weight, carcass conformation and fat scores, fat depth over the longissimus dorsi muscle at the 12th (bulls) or 10th (heifers) rib and carcass length were recorded post-slaughter. Each carcass was subsequently dissected into meat, fat and bone using a commercial dissection procedure. Muscular scores taken pre-slaughter showed positive correlations with killing-out rate (r ≈ 0.65), carcass meat proportion (r ≈ 0.60), value (r ≈ 0.55) and conformation score (r ≈ 0.70), and negative correlations with carcass bone (r ≈ -0.60) and fat (r ≈ -0.4) proportions. Corresponding correlations with muscular scores at weaning were lower. Correlations of skeletal scores taken pre-slaughter, carcass length and carcass weight with killing-out rate and the various carcass traits were mainly not significant. Carcass fat depth and kidney and channel fat weight were negatively correlated with carcass meat proportion and value, and positively correlated with fat proportion. Correlations of carcass conformation score were positive (r = 0.50 to 0.68) with killing-out rate, carcass meat proportion and carcass value and negative with bone (r ≈ -0.56) and fat (r ≈ -0.40) proportions. Corresponding correlations with carcass fat score were mainly negative except for carcass fat proportion (r ≈ 0.79). A one-unit (scale 1 to 15) increase in carcass conformation score increased carcass meat proportion by 8.9 and 8.1 g/kg, decreased fat proportion by 4.0 and 2.9 g/kg and decreased bone proportion by 4.9 and 5.2 g/kg in bulls and heifers, respectively. Corresponding values per unit increase in carcass fat score were -11.9 and -9.7 g/kg, 12.4 and 9.9 g/kg, and -0.5 and -0.2 g/kg. Carcass conformation and fat scores explained 0.70 and 0.55 of the total variation in meat yield for bulls and heifers, respectively. It is concluded that live animal muscular scores, and carcass conformation and fat scores, are useful indicators of carcass meat proportion and value. 相似文献
140.
R. T. Pereyra C. Huenchuñir D. Johansson H. Forslund L. Kautsky P. R. Jonsson K. Johannesson 《Journal of evolutionary biology》2013,26(8):1727-1737
Parallel evolution has been invoked as a forceful mechanism of ecotype and species formation in many animal taxa. However, parallelism may be difficult to separate from recently monophyletically diverged species that are likely to show complex genetic relationships as a result of considerable shared ancestral variation and secondary hybridization in local areas. Thus, species' degrees of reproductive isolation, barriers to dispersal and, in particular, limited capacities for long‐distance dispersal will affect demographical structures underlying mechanisms of divergent evolution. Here, we used nine microsatellite DNA markers to study intra‐ and interspecific genetic diversity of two recently diverged species of brown macroalgae, Fucus radicans (L. Bergström & L. Kautsky) and F. vesiculosus (Linnaeus), in the Baltic Sea. We further performed biophysical modelling to identify likely connectivity patterns influencing the species' genetic structures. For each species, we found intraspecific contrasting patterns of clonality incidence and population structure. In addition, strong genetic differentiation between the two species within each locality supported the existence of two distinct evolutionary lineages (FST = 0.15–0.41). However, overall genetic clustering analyses across both species' populations revealed that all populations from one region (Estonia) were more genetically similar to each other than to their own taxon from the other two regions (Sweden and Finland). Our data support a hypothesis of parallel speciation. Alternatively, Estonia may be the ancestral source of both species, but is presently isolated by oceanographic barriers to dispersal. Thus, a limited gene flow in combination with genetic drift could have shaped the seemingly parallel structure. 相似文献