首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   92篇
  免费   14篇
  2023年   1篇
  2021年   4篇
  2020年   2篇
  2019年   6篇
  2018年   2篇
  2017年   7篇
  2016年   6篇
  2015年   5篇
  2014年   7篇
  2013年   5篇
  2012年   3篇
  2011年   6篇
  2010年   2篇
  2009年   4篇
  2008年   5篇
  2007年   6篇
  2006年   2篇
  2004年   5篇
  2003年   4篇
  2002年   3篇
  2001年   1篇
  2000年   5篇
  1999年   3篇
  1998年   1篇
  1997年   1篇
  1996年   1篇
  1994年   1篇
  1992年   2篇
  1991年   1篇
  1990年   1篇
  1989年   1篇
  1987年   1篇
  1986年   1篇
  1984年   1篇
排序方式: 共有106条查询结果,搜索用时 15 毫秒
81.
Among the sibling species of the AfrotropicalAnopheles gambiae complex, the nominal taxon (An. gambiae s.str.) is the major malaria vector. Its bionomics suggest a man-dependent speciation process which involves, in West Africa, various incipient species chromosomally recognized by different combinations of 2R paracentric inversions. One of the most recent evolutionary steps of such a speciation process appears to be the chromosomal form Mopti, which is associated with dry season irrigation in arid zones, and is characterized by a remarkable ecological flexibility related to three 2R alternative arrangements, namelybc, u and +, whose expected karyotypes are found in Hardy-Weinberg equilibrium. The study of this chromosomal polymorphism in samples from a 16-locality transect in Mali shows wide variations and highly significant correlation with both temporal and spatial climatic differences. Mosquitoes homokaryotypic for 2Rbc are the actual dry season and arid areas breeders. The regular rise of 2Rbc frequency, up to fixation, during each dry season, corresponds to the South-North clinal increase of the same arrangement along the transect, from about 30% in the humid savanna to near fixation in the South-Saharan zone. This coherent ecological genetics case provides full support to the hypothesis of the adaptive nature of paracentric inversions. Moreover, the very peculiar system of combinations of contiguous 2R inversions, utilized by Mopti as well as by other chromosomal forms ofAn. gambiae, suggests a process of polygenic reorganization based on linkage disequilibria and involving the inversions as driving selection units.  相似文献   
82.
During the evolution of plant genomes, sequence inversions occurred repeatedly making the respective regions inaccessible for meiotic recombination and thus for breeding. Therefore, it is important to develop technologies that allow the induction of inversions within chromosomes in a directed and efficient manner. Using the Cas9 nuclease from Staphylococcus aureus (SaCas9), we were able to obtain scarless heritable inversions with high efficiency in the model plant Arabidopsis thaliana. Via deep sequencing, we defined the patterns of junction formation in wild‐type and in the non‐homologous end‐joining (NHEJ) mutant ku70‐1. Surprisingly, in plants deficient of KU70, inversion induction is enhanced, indicating that KU70 is required for tethering the local broken ends together during repair. However, in contrast to wild‐type, most junctions are formed by microhomology‐mediated NHEJ and thus are imperfect with mainly deletions, making this approach unsuitable for practical applications. Using egg‐cell‐specific expression of Cas9, we were able to induce heritable inversions at different genomic loci and at intervals between 3 and 18 kb, in the percentage range, in the T1 generation. By screening individual lines, inversion frequencies of up to the 10% range were found in T2. Most of these inversions had scarless junctions and were without any sequence change within the inverted region, making the technology attractive for use in crop plants. Applying our approach, it should be possible to reverse natural inversions and induce artificial ones to break or fix linkages between traits at will.  相似文献   
83.
Categorizing speciation into dichotomous allopatric versus nonallopatric modes may not always adequately describe the geographic context of divergence for taxa. If some of the genetic changes generating inherent barriers to gene flow between populations evolved in geographic isolation, whereas others arose in sympatry, then the mode of divergence would be mixed. The apple maggot fly, Rhagoletis pomonella, has contributed to this emerging concept of a mixed speciation mode "plurality." Genetic studies have implied that a source of diapause life-history variation associated with inversions and contributing to sympatric host race formation and speciation for R. pomonella in the United States may have introgressed from the Eje Volcanico Trans Mexicano (EVTM; a.k.a. the Altiplano) in the past. A critical unresolved issue concerning the introgression hypothesis is how past gene flow occurred given the current 1200-km disjunction in the ranges of hawthorn-infesting flies in the EVTM region of Mexico and the southern extreme of the U.S. population in Texas. Here, we report the discovery of a hawthorn-infesting population of R. pomonella in the Sierra Madre Oriental Mountains (SMO) of Mexico. Sequence data from 15 nuclear loci and mitochondrial DNA imply that the SMO flies are related to, but still different from, U.S. and EVTM flies. The host affiliations, diapause characteristics, and phylogeography of the SMO population are consistent with it having served as a conduit for gene flow between Mexico and the United States. We also present evidence suggesting greater permeability of collinear versus rearranged regions of the genome to introgression, in accord with recent models of chromosomal speciation. We discuss the implications of the results in the context of speciation mode plurality. We do not argue for abandoning the terms sympatry or allopatry, but caution that categorizing divergence into either/or geographic modes may not describe the genetic origins of all species. For R. pomonella in the United States, the proximate selection pressures triggering race formation and speciation stem from sympatric host shifts. However, some of the phenological variation contributing to host-related ecological adaptation and reproductive isolation in sympatry at the present time appears to have an older history, having originated and become packaged into inversion polymorphism in allopatry.  相似文献   
84.
Preservation of genetic diversity is of fundamental concern toconservation biology, as genetic diversity is required for evolutionarychange. Predictions of neutral theory are used to guide conservationactions, especially genetic management of captive populations ofendangered species. Loss of heterozygosity is predicted to be inverselyrelated to effective population size. However, there is controversy asto whether allozymes behave as predicted by this theory. Loss of geneticdiversity for seven allozyme loci, chromosome II inversions andmorphological mutations was investigated in 23 Drosophilamelanogaster populations, maintained at effective population sizesof 25 (8 replicates), 50 (6), 100 (4), 250 (3) and 500 (2) for 50generations. Allozyme genetic diversity (heterozygosity, percentpolymorphism and allelic diversity), inversions and morphologicalmutations were all lost at greater rates in smaller than largerpopulations. Conservation concerns about loss of genetic diversity insmall populations are clearly warranted. Across our populations, loss ofallozyme heterozygosity over generations 0–24, 0–49 and25–49 did not differ from the predictions of neutral theory. Thetrend in deviations was always in the direction expected withassociative overdominance. Our results support the use of neutral theoryto guide conservation actions, such as the genetic management ofendangered species in captivity.  相似文献   
85.
Considerable evidence exists for local adaptation of critical thermal limits in ectotherms following adult temperature stress, but fewer studies have tested for local adaptation of sublethal heat stress effects across life‐history stages. In organisms with complex life cycles, such as holometabolous insects, heat stress during juvenile stages may severely impact gametogenesis, having downstream consequences on reproductive performance that may be mediated by local adaptation, although this is rarely studied. Here, we tested how exposure to either benign or heat stress temperature during juvenile and adult stages, either independently or combined, influences egg‐to‐adult viability, adult sperm motility and fertility in high‐ and low‐latitude populations of Drosophila subobscura. We found both population‐ and temperature‐specific effects on survival and sperm motility; juvenile heat stress decreased survival and subsequent sperm motility and each trait was lower in the northern population. We found an interaction between population and temperature on fertility following application of juvenile heat stress; although fertility was negatively impacted in both populations, the southern population was less affected. When the adult stage was also subject to heat stress, the southern population exhibited positive carry‐over effects whereas the northern population's fertility remained low. Thus, the northern population is more susceptible to sublethal reproductive consequences following exposure to juvenile heat stress. This may be common in other organisms with complex life cycles and current models predicting population responses to climate change, which do not take into account the impact of juvenile heat stress on reproductive performance, may be too conservative.  相似文献   
86.
Chromosomal inversions are ubiquitous in nature and of great significance for understanding adaptation and speciation. Inversions were the first markers used to investigate the genetic structure of natural populations, leading to the concept of coadapted gene complexes and theories concerning founder effects and genetic drift in small populations. However, we still lack elements of a general theory accounting for the origins and distribution of inversions in nature. Here, we use computer simulations to show that a "mixed geographic mode" of evolution involving allopatric separation of populations followed by secondary contact and gene flow generates chromosomal divergence by natural selection under wider conditions than previous hypotheses. This occurs because inversions arising in allopatry contain a full complement of locally adapted genes. Once gene flow ensues, reduced recombination within inversions keeps these favorable genotypic combinations intact, resulting in inverted genomic regions being favored over collinear regions. This process allows inversions to establish to high frequencies. Our model can account for several classic patterns in the geographic distribution of inversions and highlights how selection on standing genetic variation allows rapid chromosomal evolution without the waiting time for new mutations. As inversion differences often separate closely related taxa, mixed modes of divergence could be common.  相似文献   
87.
Variation in climate, particularly temperature, is known to affect the genetic composition of populations. Although there have been many studies of latitudinal variation, comparisons of populations across altitudes or seasons, particularly for animal species, are less common. Here, we study genetic variation (microsatellite markers) in populations of Drosophila buzzatii collected along altitudinal gradients and in different seasons. We found no differences in genetic variation between 2 years or between seasons within years. However, there were numerous cases of significant associations between allele frequencies or expected heterozygosities and altitude, with more than half showing nonlinear relationships. While these associations indicate possible selection and local altitudinal adaptation, direct tests gave strong evidence for selection affecting two loci and weaker evidence for five other loci. Two loci that are located within an inversion (including the one with strongest evidence for selection) show a linear increase in genetic diversity with altitude, likely due to thermal selection. Parallel associations with altitude here and with latitude in Australian populations indicate that selection is operating on chromosomal regions marked by some of the loci.  相似文献   
88.
The principal vector of malaria in sub-Saharan Africa, Anopheles gambiae is subdivided into two molecular forms M and S. Additionally, several chromosomal forms, characterized by the presence of various inversion polymorphisms, have been described. The molecular forms M and S each contain several chromosomal forms, including the Savanna, Mopti and Forest forms. The M and S molecular forms are now considered to be the reproductive units within A. gambiae and it has recently been argued that a low recombination rate in the centromeric region of the X chromosome has facilitated isolation between these forms. The status of the chromosomal forms remains unclear however. Therefore, we studied genetic differentiation between Savanna S, Forest S, Forest M and Mopti M populations using microsatellites. Genetic differentiation between Savanna S and Forest S populations is very low (F(ST) = 0.0053 +/- 0.0049), even across large distances. In comparison, the Mopti M and Forest M populations show a relatively high degree of genetic differentiation (F(ST) = 0.0406 +/- 0.0054) indicating that the M molecular form may not be a single entity, but could be subdivided into at least two distinct chromosomal forms. Previously it was proposed that inversions have played a role in the origin of species within the A. gambiae complex. We argue that a possible subdivision within the M molecular form could be understood through this process, with the acquisition of inversions leading to the expansion of the M molecular form into new habitat, dividing it into two distinct chromosomal forms.  相似文献   
89.
Thomas Fogle 《Zoo biology》1990,9(5):373-383
Breeding colonies of squirrel monkeys in zoos are often a mix of Saimiri taxa, which leads to the possibility of hybridization, loss of classification features, and possible reduction of fertility among hybrids. Two zoos, Potawatomi and Brookfield, were used to assess chromosomal composition of colonies. Chromosomes were analyzed from lymphocyte cultures and animals were classified into cytogenetic types. At both zoos there was a predominance of Peruvian types, but hybrids (Peruvian/Colombian) at Potawatomi and (Peruvian/Colombian and Peruvian/Guyanan) at Brookfield were also identified. Analysis of the Brookfield lineage (three generations) revealed karyotypic Peruvians derived from hybrid parents. The Gothic versus Roman arch of periocular white hair shows intermediate or quite variable expression in hybrids and offspring derived from hybrids. Given the relative length of both pericentric inversions and the segments distal to each, a detectable reduction in fertility is predicted when compared with similar-sized inversions in humans. Somatic segregation of inversion heterozygotes, which would reconstitute homozygosity and elevate fertility, was not detected.  相似文献   
90.
Epinephelidae (groupers) is an astonishingly diverse group of carnivorous fish widely distributed in reef environments around the world, with growing economic importance. The first chromosomal inferences suggested a conservative scenario for the family. However, to date, this has not been validated using biogeographic and phylogenetic approaches. Thus, to estimate karyotype diversification among groupers, eight species from the Atlantic and Indian oceans were investigated using conventional cytogenetic protocols and fluorescence in situ hybridization of repetitive sequences (rDNA, microsatellites, transposable elements). Despite the remarkable persistence of some symplesiomorphic karyotype patterns, such as all species sharing 2n=48 and most preserve a basal karyotype (2n=48 acrocentrics), the chromosomal diversification in the family revealed an unsuspected evolutionary dynamic, where about 40% of the species escape from the ancestral karyotype pattern. These karyotype changes showed a relation with the historical biogeography, likely as a byproduct of the progressive occupancy of new areas (huge diversity of adaptive and speciation conditions). In this context, oceanic regions harboring more recent clades such as those of the Indo-Pacific, exhibited a higher karyotype diversity. Therefore, the karyotype evolution of Epinephelidae fits well with the expansion and geographic contingencies of its clades, providing a more complex and diverse scenario than previously assumed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号