首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11篇
  免费   5篇
  2020年   1篇
  2019年   2篇
  2018年   1篇
  2017年   1篇
  2016年   3篇
  2013年   1篇
  2012年   2篇
  2008年   2篇
  2006年   2篇
  1992年   1篇
排序方式: 共有16条查询结果,搜索用时 15 毫秒
11.
Food is one of the most important dimensions of resource partitioning for species coexistence. In this study, we investigated the dietary composition and foraging habits of three sympatric odontocetes in order to identify their levels of food niche overlap and ecological separation. Stomach content analysis was performed on samples collected from carcasses confiscated by police or entangled in gill nets from 1994 to 2001, including 27 Risso's dolphins (GG) (Grampus griseus), 27 Fraser's dolphins (LH) (Lagenodelphis hosei), and 45 pantropical spotted dolphins (SA) (Stenella attenuata). GG consumed only cephalopods, with Enoploteuthis chunii accounting for 90.5% of total prey consumed, LH fed on mesopelagic fishes and cephalopods, dominated by hatchetfish, Polyipnus stereope (50.2%), and SA ate both mesopelagic and epipelagic preys, primarily fishes of Myctophum asperum (20.3%) and squids of E. chunii (25.8%). Among the three odontocetes, GG had the narrowest dietary niche width, while SA had the widest width. Both the niche overlap index and the analysis of similarities (ANOSIM) showed significant diet differentiation among these three dolphin species. The depth distribution of their principal prey items further suggests that LH feeds in the deepest waters while SA utilizes prey resources near surface.  相似文献   
12.
13.
Ocean currents are an important driver of evolution for sea‐dispersed plants, enabling them to maintain reciprocal gene flow via sea‐dispersed diaspores and obtain wide distribution ranges. Although geographic barriers are known to be the primary factors shaping present genetic structure of sea‐dispersed plants, cryptic barriers which form clear genetic structure within oceanic regions are poorly understood. To test the presence of a cryptic barrier, we conducted a phylogeographic study together with past demographic inference for a widespread sea‐dispersed plant, Vigna marina, using 308 individuals collected from the entire Indo‐West Pacific (IWP) region. Chloroplast DNA variation showed strong genetic structure that separated populations into three groups: North Pacific (NP), South Pacific (SP) and Indian Ocean (IN) (FCT among groups = 0.954–1.000). According to the Approximate Bayesian computation inference, splitting time between NP and SP was approximately 20,200 years (95%HPD, 4,530–95,400) before present. Moreover, a signal of recent population expansion was detected in the NP group. This study clearly showed the presence of a cryptic barrier in the West Pacific region of the distributional range of V. marina. The locations of the cryptic barrier observed in V. marina corresponded to the genetic breaks found in other plants, suggesting the presence of a common cryptic barrier for sea‐dispersed plants. Demographic inference suggested that genetic structure related to this cryptic barrier has been present since the last glacial maximum and may reflect patterns of past population expansion from refugia.  相似文献   
14.
15.
Aim We review several aspects of the structure of regional and local assemblages of nectar‐feeding birds and bats and their relationships with food plants to determine the extent to which evolutionary convergence has or has not occurred in the New and Old World tropics. Location Our review is pantropical in extent and also includes the subtropics of South Africa and eastern Australia. Within the tropics, it deals mostly with lowland forest habitats. Methods An extensive literature review was conducted to compile data bases on the regional and local species richness of nectar‐feeding birds and bats, pollinator sizes, morphology, and diets. Coefficients of variation (CVs) were used to quantify the morphospace occupied by the various families of pollinators. The extent to which plants have become evolutionarily specialized for vertebrate pollination was explored using several criteria: number and diversity of growth forms of plant families providing food for all the considered pollinator families; the most common flower morphologies visited by all the considered pollinator families; and the number of plant families that contain genera with both bird‐ and bat‐specialized species. Results Vertebrate pollinator assemblages in the New World tropics differ from those in the Old World in terms of their greater species richness, the greater morphological diversity of their most specialized taxa, and the greater degree of taxonomic and ecological diversity and morphological specialization of their food plants. Within the Old World tropics, Africa contains more specialized nectar‐feeding birds than Asia and Australasia; Old World nectar‐feeding bats are everywhere less specialized than their New World counterparts. Main conclusions We propose that two factors – phylogenetic history and spatio‐temporal predictability (STP) of flower resources – largely account for hemispheric and regional differences in the structure of vertebrate pollinator assemblages. Greater resource diversity and resource STP in the New World have favoured the radiation of small, hovering nectar‐feeding birds and bats into a variety of relatively specialized feeding niches. In contrast, reduced resource diversity and STP in aseasonal parts of Asia as well as in Australasia have favoured the evolution of larger, non‐hovering birds and bats with relatively generalized feeding niches. Tropical Africa more closely resembles the Neotropics than Southeast Asia and Australasia in terms of resource STP and in the niche structure of its nectar‐feeding birds but not its flower‐visiting bats.  相似文献   
16.
Disjunct, pantropical distributions are a common pattern among avian lineages, but disentangling multiple scenarios that can produce them requires accurate estimates of historical relationships and timescales. Here, we clarify the biogeographical history of the pantropical avian family of trogons (Trogonidae) by re-examining their phylogenetic relationships and divergence times with genome-scale data. We estimated trogon phylogeny by analysing thousands of ultraconserved element (UCE) loci from all extant trogon genera with concatenation and coalescent approaches. We then estimated a time frame for trogon diversification using MCMCTree and fossil calibrations, after which we performed ancestral area estimation using BioGeoBEARS. We recovered the first well-resolved hypothesis of relationships among trogon genera. Trogons comprise three clades, each confined to one of three biogeographical regions: Africa, Asia and the Neotropics, with the African clade sister to the others. These clades diverged rapidly during the Oligocene-Miocene transition. Our biogeographical analyses identify a Eurasian origin for stem trogons and a crown clade arising from ancestors broadly distributed across Laurasia and Africa. The pantropical ranges of trogons are relicts of a broader Afro-Laurasian distribution that was fragmented across Africa, Asia and the New World in near coincident fashion during the Oligocene-Miocene transition by global cooling and changing habitats along the Beringian land bridge and North Africa.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号