首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1412篇
  免费   89篇
  国内免费   35篇
  2023年   33篇
  2022年   40篇
  2021年   68篇
  2020年   78篇
  2019年   87篇
  2018年   55篇
  2017年   43篇
  2016年   27篇
  2015年   46篇
  2014年   81篇
  2013年   110篇
  2012年   45篇
  2011年   51篇
  2010年   39篇
  2009年   54篇
  2008年   43篇
  2007年   53篇
  2006年   50篇
  2005年   30篇
  2004年   24篇
  2003年   21篇
  2002年   36篇
  2001年   24篇
  2000年   15篇
  1999年   15篇
  1998年   14篇
  1997年   16篇
  1996年   7篇
  1995年   12篇
  1994年   14篇
  1993年   10篇
  1992年   23篇
  1991年   20篇
  1990年   13篇
  1989年   12篇
  1988年   13篇
  1987年   11篇
  1986年   14篇
  1985年   32篇
  1984年   46篇
  1983年   17篇
  1982年   22篇
  1981年   18篇
  1980年   12篇
  1979年   7篇
  1978年   10篇
  1977年   6篇
  1976年   6篇
  1974年   5篇
  1972年   3篇
排序方式: 共有1536条查询结果,搜索用时 15 毫秒
81.
Abstract

A survey of planktonic dinoflagellates and related cysts was carried out in the Gulf of Trieste throughout one year from April 1992 to March 1993. 113 taxa were recovered by the analysis of phytoplankton net samples. The most represented genera were Protoperidinium (34 species), Ceratium (24 species), Dinophysis (15 species), Gonyaulax (11 species) and Prorocentrum (8 species). A particular attention was given to potentially toxic species belonging to the genera Dinophysis, Alexandrium and Prorocentrum. The highest number of species (67 species) was recorded in July, and the lowest one (18 species) in February.

33 cyst morphotypes were recorded by the analysis of sediment samples. The most represented genera were Protoperidinium (8 morphotypes), Scrippsiella (3 morphotypes), Gonyaulax (3 morphotypes) and Alexandrium (2 morphotypes); the cysts most frequently found were those of Conyaulax polyedra and Alexandrium pseudogonyaulax.  相似文献   
82.
Recent genome‐wide association studies have linked type‐2 diabetes mellitus to a genomic region in chromosome 9p21 near the Ink4/Arf locus, which encodes tumor suppressors that are up‐regulated in a variety of mammalian organs during aging. However, it is unclear whether the susceptibility to type‐2 diabetes is associated with altered expression of the Ink4/Arf locus. In the present study, we investigated the role of Ink4/Arf in age‐dependent alterations of insulin and glucose homeostasis using Super‐Ink4/Arf mice which bear an extra copy of the entire Ink4/Arf locus. We find that, in contrast to age‐matched wild‐type controls, Super‐Ink4/Arf mice do not develop glucose intolerance with aging. Insulin tolerance tests demonstrated increased insulin sensitivity in Super‐Ink4/Arf compared with wild‐type mice, which was accompanied by higher activation of the insulin receptor substrate (IRS)‐PI3K‐AKT pathway in liver, skeletal muscle and heart. Glucose uptake studies in Super‐Ink4/Arf mice showed a tendency toward increased 18F‐fluorodeoxyglucose uptake in skeletal muscle compared with wild‐type mice (= 0.079). Furthermore, a positive correlation between glucose uptake and baseline glucose levels was observed in Super‐Ink4/Arf mice (P < 0.008) but not in wild‐type mice. Our studies reveal a protective role of the Ink4/Arf locus against the development of age‐dependent insulin resistance and glucose intolerance.  相似文献   
83.
Cell-to-cell communication mediated by gap junctions made of Connexin36 (Cx36) contributes to pancreatic β-cell function. We have recently demonstrated that Cx36 also supports β-cell survival by a still unclear mechanism. Using specific Cx36 siRNAs or adenoviral vectors, we now show that Cx36 downregulation promotes apoptosis in INS-1E cells exposed to the pro-inflammatory cytokines (IL-1β, TNF-α and IFN-γ) involved at the onset of type 1 diabetes, whereas Cx36 overexpression protects against this effect. Cx36 overexpression also protects INS-1E cells against endoplasmic reticulum (ER) stress-mediated apoptosis, and alleviates the cytokine-induced production of reactive oxygen species, the depletion of the ER Ca2+ stores, the CHOP overexpression and the degradation of the anti-apoptotic protein Bcl-2 and Mcl-1. We further show that cytokines activate the AMP-dependent protein kinase (AMPK) in a NO-dependent and ER-stress-dependent manner and that AMPK inhibits Cx36 expression. Altogether, the data suggest that Cx36 is involved in Ca2+ homeostasis within the ER and that Cx36 expression is downregulated following ER stress and subsequent AMPK activation. As a result, cytokine-induced Cx36 downregulation elicits a positive feedback loop that amplifies ER stress and AMPK activation, leading to further Cx36 downregulation. The data reveal that Cx36 plays a central role in the oxidative stress and ER stress induced by cytokines and the subsequent regulation of AMPK activity, which in turn controls Cx36 expression and mitochondria-dependent apoptosis of insulin-producing cells.  相似文献   
84.
The adsorption of colipase is essential for pancreatic triglyceride lipase activity and efficient dietary fat digestion. Yet, little is known about which specific amino acids in the hydrophobic surface of colipase influence adsorption. In this study, we systematically substituted alanine or tryptophan at residues implicated in adsorption of colipase to an interface. We expressed, purified recombinant colipase mutants and characterized the ability of each alanine mutant to restore activity to lipase in the presence of bile salts. The functions of L16A, Y55A, I79A and F84A colipase were most impaired with activities ranging from 20 to 60% of wild-type colipase. We next characterized the fluorescence properties of the tryptophan mutants in the absence and presence of bile–salt–oleic acid mixed micelles. We performed steady-state emission spectra to determine peak shift and I330/I350 ratio and acrylamide quenching curves to characterize the environment of the residues. The analysis supports a model of adsorption that includes residues Leu 34 and Leu 36 on the 2nd loop, Tyr 55 and Tyr 59 on the 3rd loop and Ile 75 and Ile 79 on the 4th loop. The analysis confirms that Phe 84 is not part of the adsorption surface and likely stabilizes the conformation of colipase. Contrary to the predictions of computer modeling, the results provide strong support for an essential role of Tyr 55 in colipase adsorption to mixed micelles. The results indicate that the adsorption of colipase to mixed micelles is mediated by specific residues residing in a defined surface of colipase.  相似文献   
85.
Diabetes results from an inadequate functional β cell mass, either due to autoimmune destruction (Type 1 diabetes) or insulin resistance combined with β cell failure (Type 2 diabetes). Strategies to enhance β cell regeneration or increase cell proliferation could improve outcomes for patients with diabetes. Research conducted over the past several years has revealed that factors regulating embryonic β cell mass expansion differ from those regulating replication ofβ cells post-weaning. This article aims to compare and contrast factors known to control embryonic and postnatal β cell replication. In addition, we explore the possibility that connective tissue growth factor (CTGF) could increase adult β cell replication. We have already shown that CTGF is required for embryonicβ cell proliferation and is sufficient to induce replication of embryonic β cells. Here we examine whether adult β cell replication and expansion of β cell mass can be enhanced by increased CTGF expression in mature β cells.  相似文献   
86.
《MABS-AUSTIN》2013,5(2):367-380
Human antibody-ribonuclease (RNase) fusion proteins, referred to as immunoRNases, have been proposed as an alternative to heterologous immunotoxins, without their immunogenicity and unspecific toxicity issues. In this study, we investigated if human pancreatic RNase will be suitable as effector component in a therapeutic antibody development platform. We generated several fusion proteins consisting of tumor-specific human immunoglobulins (IgGs) and human pancreatic RNase. Transient mammalian cell production was efficient and IgG-RNases were purified to homogeneity. Antigen binding was comparable to the parental antibodies and RNase catalytic activity was retained even in the presence of 50-fold molar excess of human cytosolic RNase inhibitor (RI). Serum stability, cell binding and internalization of IgG-RNases were comparable to the parental IgGs. Despite these promising properties, none of the IgG-RNases revealed significant inhibition of tumor cell growth in vitro even when targeting different antigens putatively employing different endocytotic pathways. The introduction of different linkers containing endosomal protease cleavage sites into the IgG-RNase did not enhance cytotoxicity. Similarly, RI evasive human pancreatic RNase variants mediated only small inhibiting effects on tumor cell growth at high concentrations, potentially reflecting inefficient cytosolic translocation. Taken together, human pancreatic RNase and variants did not prove to be generally suitable as effector component for a therapeutic antibody drug development platform.  相似文献   
87.
《Autophagy》2013,9(12):1757-1768
There is a growing evidence of the role of autophagy in pancreatic β cell homeostasis. During development of type 2 diabetes, β cells are required to supply the increased demand of insulin. In such a stage, β cells have to address high ER stress conditions that could lead to abnormal insulin secretion, and ultimately, β cell death and overt diabetes. In this study, we used insulin secretion-deficient β cells derived from fetal mice. These cells present an increased accumulation of polyubiquitinated protein aggregates and LC3B-positive puncta, when compared with insulinoma-derived β cell lines. We found that insulin secretion deficiency renders these cells hypersensitive to endoplasmic reticulum (ER) stress-mediated cell death. Chemical or shRNA-mediated inhibition of autophagy increased β cell death under ER stress. On the other hand, rapamycin treatment increased both autophagy and cell survival under ER stress. Insulin secretion-deficient β cells showed a marked reduction of the antiapoptotic protein BCL2, together with increased BAX expression and ERN1 hyperactivation upon ER stress induction. These results showed how insulin secretion deficiency in β cells may be contributing to ER stress-mediated cell death, and in this regard, we showed how the autophagic response plays a prosurvival role.  相似文献   
88.
The plasma membrane of neurons consists of distinct domains, each of which carries specialized functions and a characteristic set of membrane proteins. While this compartmentalized membrane organization is essential for neuronal functions, it remains controversial how neurons establish these domains on the laterally fluid membrane. Here, using immunostaining, lipid-MS analysis and gene ablation with the CRISPR/Cas9 system, we report that the pancreatic lipase-related protein 2 (PLRP2), a phospholipase A1 (PLA1), is a key organizer of membrane protein localization at the neurite tips of PC12 cells. PLRP2 produced local distribution of 1-oleoyl-2-palmitoyl-PC at these sites through acyl-chain remodeling of membrane phospholipids. The resulting lipid domain assembled the syntaxin 4 (Stx4) protein within itself by selectively interacting with the transmembrane domain of Stx4. The localized Stx4, in turn, facilitated the fusion of transport vesicles that contained the dopamine transporter with the domain of the plasma membrane, which led to the localized distribution of the transporter to that domain. These results revealed the pivotal roles of PLA1, specifically PLRP2, in the formation of functional domains in the plasma membrane of neurons. In addition, our results suggest a mode of membrane organization in which the local acyl-chain remodeling of membrane phospholipids controls the selective localization of membrane proteins by regulating both lipid-protein interactions and the fusion of transport vesicles to the lipid domain.  相似文献   
89.
Herein, we found that salidroside suppressed hypoxia-inducible factor 1 alpha (HIF-1α) and lysyl oxidase-like protein 2 (LOXL2) within human pancreatic cancer BxPC-3 cells cultured both under normoxia and hypoxia condition. To investigate the effect of salidroside on tumorigenesis of BxPC-3 cells and whether HIF-1α and LXCL2 were involved in this process, cells transfected with or without LOXL2 overexpression vector, were treated with 50 μg/mL of salidroside or 50 μM of KC7F2 (a HIF-1α inhibitor) under hypoxia. Cell viability and invasion were assessed using CCK-8 and Transwell chamber assay, respectively. Expression of E-cadherin and matrix metalloproteinase 2/9 (MMP 2/9) was determined, by Western blot analysis, to assess cell mobility at molecular levels. We confirmed that hypoxia increased LOXL2 and induced tumorigenesis of BxPC-3 cells, as evidenced by promoted cell proliferation and invasion, enhanced MMP2/9 while reduced E-cadherin. Interestingly, hypoxia-induced carcinogenesis was significantly retarded by both salidroside and KC7F2, however, enhanced with LOXL2 overexpression. Besides, salidroside and KC7F2 reduced LOXL2, and reversed the tumorigenesis of BxPC-3 cells induced by LOXL2 overexpression. Given the inhibitory effect of salidroside on HIF-1α expression, our data suggested that: (1) LOXL2 was the mechanism, whereby salidroside and KC7F2 showed inhibitory effect on cancer progression of BxPC-3 cells; (2) salidroside exerted its anticancer effect, most likely, by a HIF-1α/LOXL2 pathway. In conclusion, salidroside was a novel therapeutic drug in pancreatic cancer, and downregulation of HIF-1α and LXCL2 was the underlying mechanism.  相似文献   
90.
Pancreatic stellate cells (PSCs) secrete various factors, which can influence the β-cell function. The identification of stellate cell infiltration into the islets in pancreatic diseases suggests possible existence of cross-talk between these cells. To elucidate the influence of PSCs on β-cell function, mouse PSCs were cocultured with Min6 cells using the Transwell inserts. Glucose-stimulated insulin secretion from Min6 cells in response to PSCs was quantified by enzyme-linked immunosorbent assay and insulin gene expression was measured by quantitative polymerase chain reaction. Upon cytometric identification of IL6 in PSC culture supernatants, Min6 cells were cultured with IL6 to assess its influence on the insulin secretion and gene expression. PLC-IP3 pathway inhibitors were added in the cocultures, to determine the influence of PSC-secreted IL6 on Glucose-stimulated insulin secretion from Min6 cells. Increased insulin secretion with a concomitant decrease in total insulin content was noticed in PSC-cocultured Min6 cells. Although increased GSIS was noted from IL6-treated Min6 cells, no change in the total insulin content was noted. Coculture of Min6 cells with PSCs or their exposure to IL6 did not alter either the expression of β-cell-specific genes or that of miRNA-375. PSC-cocultured Min6 cells, in the presence of PLC-IP3 pathway inhibitors (U73122, Neomycin, and Xestospongin C), did not revoke the observed increase in GSIS. In conclusion, the obtained results indicate that augmented insulin secretion from Min6 cells in response to PSC secretions is independent of IL6-mediated PLC-IP3 pathway.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号