首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1233篇
  免费   76篇
  国内免费   31篇
  2023年   33篇
  2022年   39篇
  2021年   64篇
  2020年   73篇
  2019年   85篇
  2018年   50篇
  2017年   33篇
  2016年   23篇
  2015年   41篇
  2014年   74篇
  2013年   100篇
  2012年   42篇
  2011年   46篇
  2010年   32篇
  2009年   38篇
  2008年   34篇
  2007年   44篇
  2006年   40篇
  2005年   21篇
  2004年   21篇
  2003年   14篇
  2002年   25篇
  2001年   21篇
  2000年   14篇
  1999年   12篇
  1998年   11篇
  1997年   13篇
  1996年   5篇
  1995年   10篇
  1994年   12篇
  1993年   8篇
  1992年   18篇
  1991年   18篇
  1990年   14篇
  1989年   8篇
  1988年   12篇
  1987年   12篇
  1986年   12篇
  1985年   34篇
  1984年   44篇
  1983年   16篇
  1982年   23篇
  1981年   16篇
  1980年   10篇
  1979年   8篇
  1978年   3篇
  1977年   5篇
  1976年   4篇
  1972年   1篇
  1971年   1篇
排序方式: 共有1340条查询结果,搜索用时 15 毫秒
91.
Macroautophagy/autophagy is an evolutionarily conserved degradation pathway that maintains homeostasis. Ferroptosis, a novel form of regulated cell death, is characterized by a production of reactive oxygen species from accumulated iron and lipid peroxidation. However, the relationship between autophagy and ferroptosis at the genetic level remains unclear. Here, we demonstrated that autophagy contributes to ferroptosis by degradation of ferritin in fibroblasts and cancer cells. Knockout or knockdown of Atg5 (autophagy-related 5) and Atg7 limited erastin-induced ferroptosis with decreased intracellular ferrous iron levels, and lipid peroxidation. Remarkably, NCOA4 (nuclear receptor coactivator 4) was a selective cargo receptor for the selective autophagic turnover of ferritin (namely ferritinophagy) in ferroptosis. Consistently, genetic inhibition of NCOA4 inhibited ferritin degradation and suppressed ferroptosis. In contrast, overexpression of NCOA4 increased ferritin degradation and promoted ferroptosis. These findings provide novel insight into the interplay between autophagy and regulated cell death.  相似文献   
92.
Identification of subjects with a high risk of developing type 2 diabetes (T2D) is fundamental for prevention of the disease. Consequently, it is essential to search for new biomarkers that can improve the prediction of T2D. The aim of this study was to examine whether 5 DNA methylation loci in blood DNA (ABCG1, PHOSPHO1, SOCS3, SREBF1, and TXNIP), recently reported to be associated with T2D, might predict future T2D in subjects from the Botnia prospective study. We also tested if these CpG sites exhibit altered DNA methylation in human pancreatic islets, liver, adipose tissue, and skeletal muscle from diabetic vs. non-diabetic subjects. DNA methylation at the ABCG1 locus cg06500161 in blood DNA was associated with an increased risk for future T2D (OR = 1.09, 95% CI = 1.02–1.16, P-value = 0.007, Q-value = 0.018), while DNA methylation at the PHOSPHO1 locus cg02650017 in blood DNA was associated with a decreased risk for future T2D (OR = 0.85, 95% CI = 0.75–0.95, P-value = 0.006, Q-value = 0.018) after adjustment for age, gender, fasting glucose, and family relation. Furthermore, the level of DNA methylation at the ABCG1 locus cg06500161 in blood DNA correlated positively with BMI, HbA1c, fasting insulin, and triglyceride levels, and was increased in adipose tissue and blood from the diabetic twin among monozygotic twin pairs discordant for T2D. DNA methylation at the PHOSPHO1 locus cg02650017 in blood correlated positively with HDL levels, and was decreased in skeletal muscle from diabetic vs. non-diabetic monozygotic twins. DNA methylation of cg18181703 (SOCS3), cg11024682 (SREBF1), and cg19693031 (TXNIP) was not associated with future T2D risk in subjects from the Botnia prospective study.  相似文献   
93.
94.
95.
96.
Matrix metalloproteinase 9 (MMP9) is involved in the proteolysis of extracellular proteins and plays a critical role in pancreatic ductal adenocarcinoma (PDAC) progression, invasion and metastasis. The therapeutic potential of an anti‐MMP9 antibody (αMMP9) was evaluated in combination with nab‐paclitaxel (NPT)‐based standard cytotoxic therapy in pre‐clinical models of PDAC. Tumour progression and survival studies were performed in NOD/SCID mice. The mechanistic evaluation involved RNA‐Seq, Luminex, IHC and Immunoblot analyses of tumour samples. Median animal survival compared to controls was significantly increased after 2‐week therapy with NPT (59%), Gem (29%) and NPT+Gem (76%). Addition of αMMP9 antibody exhibited further extension in survival: NPT+αMMP9 (76%), Gem+αMMP9 (47%) and NPT+Gem+αMMP9 (94%). Six‐week maintenance therapy revealed that median animal survival was significantly increased after NPT+Gem (186%) and further improved by the addition of αMMP9 antibody (218%). Qualitative assessment of mice exhibited that αMMP9 therapy led to a reduction in jaundice, bloody ascites and metastatic burden. Anti‐MMP9 antibody increased the levels of tumour‐associated IL‐28 (1.5‐fold) and decreased stromal markers (collagen I, αSMA) and the EMT marker vimentin. Subcutaneous tumours revealed low but detectable levels of MMP9 in all therapy groups but no difference in MMP9 expression. Anti‐MMP9 antibody monotherapy resulted in more gene expression changes in the mouse stroma compared to the human tumour compartment. These findings suggest that anti‐MMP9 antibody can exert specific stroma‐directed effects that could be exploited in combination with currently used cytotoxics to improve clinical PDAC therapy.  相似文献   
97.
Exosomes are small extracellular membrane vesicles important in intercellular communication, with their oncogenic cargo attributed to tumor progression and pre‐metastatic niche formation. To gain an insight into key differences in oncogenic composition of exosomes, human non‐malignant epithelial and pancreatic cancer cell models and purified and characterized resultant exosome populations are utilized. Proteomic analysis reveals the selective enrichment of known exosome markers and signaling proteins in comparison to parental cells. Importantly, valuable insights into oncogenic exosomes (362 unique proteins in comparison to non‐malignant exosomes) of key metastatic regulatory factors and signaling molecules fundamental to pancreatic cancer progression (KRAS, CD44, EGFR) are provided. It is reported that oncogenic exosomes contain factors known to regulate the pre‐metastatic niche (S100A4, F3, ITGβ5, ANXA1), clinically‐relevant proteins which correlate with poor prognosis (CLDN1, MUC1) as well as protein networks involved in various cancer hallmarks including proliferation (CLU, CAV1), invasion (PODXL, ITGA3), metastasis (LAMP1, ST14) and immune surveillance escape (B2M). The presence of these factors in oncogenic exosomes offers an understanding of select differences in exosome composition during tumorigenesis, potential components as prognostic and diagnostic biomarkers in pancreatic cancer, and highlights the role of exosomes in mediating crosstalk between tumor and stromal cells.  相似文献   
98.
99.
100.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号