首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   786篇
  免费   110篇
  国内免费   3篇
  2024年   3篇
  2023年   6篇
  2022年   6篇
  2021年   8篇
  2020年   27篇
  2019年   34篇
  2018年   43篇
  2017年   29篇
  2016年   38篇
  2015年   20篇
  2014年   30篇
  2013年   66篇
  2012年   26篇
  2011年   34篇
  2010年   45篇
  2009年   51篇
  2008年   63篇
  2007年   46篇
  2006年   39篇
  2005年   45篇
  2004年   48篇
  2003年   20篇
  2002年   21篇
  2001年   9篇
  2000年   13篇
  1999年   23篇
  1998年   23篇
  1997年   24篇
  1996年   15篇
  1995年   6篇
  1994年   9篇
  1993年   5篇
  1992年   3篇
  1991年   5篇
  1990年   1篇
  1989年   1篇
  1987年   3篇
  1986年   1篇
  1985年   1篇
  1984年   1篇
  1983年   4篇
  1981年   2篇
  1980年   1篇
  1976年   1篇
排序方式: 共有899条查询结果,搜索用时 31 毫秒
21.
The endonuclease activity of the bacterial colicin 9 enzyme is controlled by the specific and high‐affinity binding of immunity protein 9 (Im9). Molecular dynamics simulation studies in explicit solvent were used to investigate the free energy change associated with the mutation of two hot‐spot interface residues [tyrosine (Tyr): Tyr54 and Tyr55] of Im9 to Ala. In addition, the effect of several other mutations (Leu33Ala, Leu52Ala, Val34Ala, Val37Ala, Ser48Ala, and Ile53Ala) with smaller influence on binding affinity was also studied. Good qualitative agreement of calculated free energy changes and experimental data on binding affinity of the mutations was observed. The simulation studies can help to elucidate the molecular details on how the mutations influence protein–protein binding affinity. The role of solvent and conformational flexibility of the partner proteins was studied by comparing the results in the presence or absence of solvent and with or without positional restraints. Restriction of the conformational mobility of protein partners resulted in significant changes of the calculated free energies but of similar magnitude for isolated Im9 and for the complex and therefore in only modest changes of binding free energy differences. Although the overall binding free energy change was similar for the two Tyr–Ala mutations, the physical origin appeared to be different with solvation changes contributing significantly to the Tyr55Ala mutation and to a loss of direct protein–protein interactions dominating the free energy change due to the Tyr54Ala mutation. Proteins 2013. © 2012 Wiley Periodicals, Inc.  相似文献   
22.
The experimental electron affinities of adenine, guanine, cytosine, thymine and uracil have been determined from reduction potentials and negative ion photoelectron spectra. Updated values for purine, pyrimidine and other nitrogen heterocyclics, which have not been measured in the gas phase, are presented. The electron affinity of Watson–Crick guanine–cytosine is estimated empirically. The experimental values are consistent with quantum mechanical semi-empirical multiconfiguration configuration interaction calculations. The bulk hydration energies of the nucleobase anions, 2.34 eV, determined from the experimental data and sequential anion hydration energy difference of about 0.20(5) eV suggest that 10–15 water molecules complete the hydration shell. The electron affinities for the formation of doublet and quartet anions of the nucleobases, nucleosides, nucleotides and Watson–Crick base pairs are calculated. We postulate that low-lying quartet anion states and their spin distribution can and will participate in electron conduction, radiation damage, oxidation damage and repair, strand breakage and protein synthesis.  相似文献   
23.
Abstract

We have empirically tested limits of the magnitude of multiple time steps in molecular dynamics simulations of aqueous systems, and the extent to which these offer a means to shorten computation time. Three different steps were employed, δ0t for calculation of “bonded” forces, δ1t for calculations of short-range (< 6 Å) non-bonded forces, and δ2t for long-range (< 10 Å) non-bonded forces. Each longer step was a multiple of the shortest one. The leap-frog integration algorithm was used with SHAKE for restraint of all bond lengths and water molecules. For a system of SPC water molecules, calculation of short-range non-bonded forces could be done with a time step δ1t = 10 fs, without appreciable change of the average temperature and energy, radial distribution function or diffusion coefficient. These properties were found to be insensitive to the inclusion of long-range non-bonded forces. A multiple-step protocol with δ0t = 2, δ1t = 4 and δ2t = 16 fs has been compared with a single-step procedure with δt 2 fs for small polypeptides in water. The exploration of conformation space, with crossing of low energy barriers, was tested with the glycine dipeptide and was found to proceed at similar rates. Mean, hysteresis and statistical error of the free energy for changing alanine to α-amino butyric acid in the dipeptide, calculated by the slow-growth method, proved independent of the cutoff distance or exact protocol, within 1 kJ/mol. In conclusion, we recommend, instead of use of a single time step of 2 fs at a 10 Å cutoff, use of a time step δt = 4 fs for short-range nonbonded forces and a time step δ2t = 16 fs for long-range nonbonded forces for a 60% reduction of computation time.  相似文献   
24.
A series of bridled chiroporphyrins (BCP) and their metal complexes were prepared, in which two n‐methylene straps connect adjacent meso substituents by ester linkages. These compounds can exist as four atropisomers (αααα, αβαβ, αααβ, or ααββ) depending on the position of the meso groups relative to the macrocycle (α when above and β when below). We characterized the conformation of these chiral porphyrins and their metal (Zn, Ni, Mn) complexes by vibrational circular dichroism (VCD) associated with ab initio calculations. VCD spectra of the three metalloporphyrins were recorded in CDCl3 and benzene solutions and ab initio calculations of their four atropoisomers were performed at the Density Functional Theory (DFT) level. The bridled chiroporphyrin with the longer straps (9 CH2) and its nickel(II) complex can be isolated as the αβαβ atropisomer in the solid state and were found with the same conformation in CDCl3 and benzene solutions. The bridled chiroporphyrin with the shortest straps (8 CH2) and its zinc(II) complex can be isolated as the αααα atropisomer in the solid state, but in solution they are subject to atropisomeric equilibria, resulting in atropisomer distributions that are strongly solvent‐dependent. Comparison of the experimental VCD spectra with the predicted spectra of the four atropisomers allowed the quantification of these distributions. Finally, the manganese(III) complex also exhibits an atropisomeric equilibria in solution which is slightly solvent‐dependent. Chirality 25:480–486, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   
25.
Abstract

Electron holes are known to migrate along the DNA or RNA duplexes and to localize preferentially on successive guanines. The stationary point conformations of Gua pairs that can trap or let pass these holes have been characterized by quantum chemistry calculations. Here we show their recurrent occurrence in DNA and RNA X-ray structures, often in quadruplex conformations or in interaction with proteins, ligands or metal ions. These findings give support to the biological, possibly regulatory, roles of charge migration in cell functioning.  相似文献   
26.
Abstract

Proteins with the ability to specifically bind strontium would potentially be of great use in the field of nuclear waste management. Unfortunately, no such peptides or proteins are known—indeed, it is uncertain whether they exist under natural conditions due to low environmental concentrations of strontium. To investigate the possibility of devising such molecules, one of us (CV), in a previous experimental study [J. Biol. Inorg. Chem. 8, 33440 (2003)], proposed starting from an EF-hand motif of the protein calmodulin and mutating some residues to change the motif's specificity for calcium into one for strontium. In this paper, which represents a theoretical complement to the experimental work, we analyzed small-molecule crystallographic structures and performed quantum chemical calculations to identify possible mutations. We then constructed seven mutant sequences of the EF-hand motif and analyzed their dynamical and binding behaviors using molecular dynamics simulations and free-energy calculations (using the MM/PBSA method). As a result of these analyzes we were able to isolate some characteristics that could lead to mutant peptides with enhanced strontium affinity.  相似文献   
27.
The mosquito Aedes aegypti is the vector agent responsible for the transmission of yellow fever and dengue fever viruses to over 80 million people in tropical and subtropical regions of the world. Exhaustive efforts have lead to a vaccine candidate with only 30% effectiveness against the dengue virus and failure to protect patients against the serotype 2. Hence, vector control remains the most viable route to dengue fever control programs. We have synthesized a class of 1,2,4-oxadiazole derivatives whose most biologically active compounds exhibit potent activity against Aedes aegypti larvae (ca. of 15 ppm) and low toxicity in mammals. Exposure to these larvicides results in larvae pigmentation in a manner correlated with the LC50 measurements. Structural comparisons of the 1,2,4-oxadiazole nucleus against known inhibitors of insect enzymes allowed the identification of 3-hydroxykynurenine transaminase as a potential target for these synthetic larvicides. Molecular docking calculations indicate that 1,2,4-oxadiazole compounds can bind to 3-hydroxykynurenine transaminase with similar conformation and binding energies as its crystallographic inhibitor 4-(2-aminophenyl)-4-oxobutanoic acid.  相似文献   
28.
29.
30.
The non-Boltzmann Bennett (NBB) free energy estimator method is applied to 21 molecules from the blind subset of the SAMPL4 challenge. When NBB is applied with the SMD implicit solvent model, and the OLYP/DZP level of quantum chemistry, highly accurate hydration free energy calculations are obtained with respect to experiment (RMSD = 0.89 kcal·mol−1). Other quantum chemical methods are also tested, and the effects of solvent model, density functional, basis set are explored in this benchmarking study, providing a framework for improvements in calculating hydration free energies. We provide a practical guide for using the best QM-NBB protocols that are consistently more accurate than either pure QM or pure MM alone. In situations where high accuracy hydration free energy predictions are needed, the QM-NBB method with SMD implicit solvent should be the first choice of quantum chemists.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号