首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   167篇
  免费   3篇
  国内免费   9篇
  2024年   1篇
  2023年   2篇
  2022年   1篇
  2021年   2篇
  2020年   1篇
  2019年   1篇
  2018年   3篇
  2017年   2篇
  2016年   5篇
  2015年   3篇
  2014年   3篇
  2013年   18篇
  2012年   4篇
  2011年   6篇
  2010年   5篇
  2009年   7篇
  2008年   5篇
  2007年   7篇
  2006年   6篇
  2005年   9篇
  2004年   5篇
  2003年   7篇
  2002年   9篇
  2001年   3篇
  2000年   4篇
  1999年   4篇
  1998年   4篇
  1997年   2篇
  1996年   2篇
  1995年   4篇
  1994年   5篇
  1993年   2篇
  1992年   5篇
  1991年   6篇
  1990年   2篇
  1989年   2篇
  1988年   3篇
  1987年   3篇
  1986年   8篇
  1985年   2篇
  1983年   3篇
  1982年   1篇
  1981年   1篇
  1979年   1篇
排序方式: 共有179条查询结果,搜索用时 15 毫秒
81.
A novel technique is introduced for patterning and controllably merging two cultures of adherent cells on a microelectrode array (MEA) by separation with a removable physical barrier. The device was first demonstrated by separating two cardiomyocyte populations, which upon merging synchronized electrical activity. Next, two applications of this co‐culture device are presented that demonstrate its flexibility as well as outline different metrics to analyze co‐cultures. In a differential assay, the device contained two distinct cell cultures of neonatal wild‐type and β‐adrenergic receptor (β‐AR) knockout cardiomyocytes and simultaneously exposed them with the β‐AR agonist isoproterenol. The beat rate and action potential amplitude from each cell type displayed different characteristic responses in both unmerged and merged states. This technique can be used to study the role of β‐receptor signaling and how the corresponding cellular response can be modulated by neighboring cells. In the second application, action potential propagation between modeled host and graft cell cultures was shown through the analysis of conduction velocity across the MEA. A co‐culture of murine cardiomyocytes (host) and murine skeletal myoblasts (graft) demonstrated functional integration at the boundary, as shown by the progression of synchronous electrical activity propagating from the host into the graft cell populations. However, conduction velocity significantly decreased as the depolarization waves reached the graft region due to a mismatch of inherent cell properties that influence conduction. © 2010 American Institute of Chemical Engineers Biotechnol. Prog., 2010  相似文献   
82.
We analyzed the pH-induced mobility changes in moPrP(C) alpha-helix and beta-sheets by cysteine-scanning site-directed spin labeling (SDSL) with ESR. Nine amino acid residues of alpha-helix1 (H1, codon 143-151), four amino acid residues of beta-sheet1 (S1, codon 127-130), and four amino acid residues of beta-sheet2 (S2, codon 160-163) were substituted for by cysteine residues. These recombinant mouse PrP(C) (moPrP(C)) mutants were reacted with a methane thiosulfonate sulfhydryl-specific spin labeling reagent (MTSSL). The 1/deltaH of the central (14N hyperfine) component (M(I) = 0) in the ESR spectrum of spin-labeled moPrP(C) was measured as a mobility parameter of nitroxide residues (R1). The mobilities of E145R1 and Y149R1 at pH 7.4, which was identified as a tertiary contact site by a previous NMR study of moPrP, were lower than those of D143R1, R147R1, and R150R1 reported on the helix surface. Thus, the mobility in the H1 region in the neutral solution was observed with the periodicity associated with a helical structure. On the other hand, the values in the S2 region, known to be located in the buried side, were lower than those in the S1 region located in the surface side. These results indicated that the mobility parameter of the nitroxide label was well correlated with the 3D structure of moPrP. Furthermore, the present study clearly demonstrated three pH-sensitive sites in moPrP, i.e., (1) the N-terminal tertiary contact site of H1, (2) the C-terminal end of H1, and (3) the S2 region. In particular, among these pH-sensitive sites, the N-terminal tertiary contact region of H1 was found to be the most pH-sensitive one and was easily converted to a flexible structure by a slight decrease of pH in the solution. These data provided molecular evidence to explain the cellular mechanism for conversion from PrP(C) to PrP(Sc) in acidic organelles such as the endosome.  相似文献   
83.
Complement activation is an important step in the acceleration of liposome clearance. The anaphylatoxins released following complement activation may motivate a wide variety of physiologic changes. We performed physicochemical characterization and in vitro studies of the interaction of complement system with both noncirculating and long-circulating pH-sensitive and nonpH-sensitive liposomes. The liposomes were characterized by diameter, zeta potential, and atomic force microscopy (AFM). The study of liposome interactions with complement system was conducted using hemolytic assay in rat serum. All liposomes presented a similar mean diameter (between 99.8 and 124.3 nm). The zeta potential was negative in all liposome preparations, except in liposomes modified with aminopoly (ethyleneglycol) 2000-distearoylphosphatidylethanolamine (aPEG2000-DSPE), which presented positive zeta potential. Atomic force microscopy images showed that non–long-circulating pH-sensitive liposomes are prone to vesicles aggregation. Non–pH-sensitive liposomes complement system activates, while pH-sensitive liposomes showed to be poor complement activators in rat serum.  相似文献   
84.
In recent years, a number of in vitro studies have reported on the possible athermal effects of electromagnetic exposure on biological tissue. Typically, this kind of study is performed on monolayers of primary cells or cell lines. However, two‐dimensional cell layer systems lack physiological relevance since cells in vivo are organized in a three‐dimensional (3D) architecture. In monolayer studies, cell‐cell and cell‐ECM interactions obviously differ from live tissue and scale‐ups of experimental results to in vivo systems should be considered carefully. To overcome this problem, we used a scaffold‐free 3D cell culture system, suitable for the exploration of electrophysiological effects due to electromagnetic fields (EMF) at 900 MHz. Dissociated cardiac myocytes were reaggregated into cellular spheres by constant rotation, and non‐invasive extracellular recordings of these so‐called spheroids were performed with microelectrode arrays (MEA). In this study, 3D cell culture systems were exposed to pulsed EMFs in a stripline setup. We found that inhomogeneities in the EMF due to electrodes and conducting lines of the MEA chip had only a minor influence on the field distribution in the spheroid if the exposure parameters were chosen carefully. Bioelectromagnetics 32:351–359, 2011. © 2011 Wiley‐Liss, Inc.  相似文献   
85.
Summary Ionic currents around caulonema tip cells of the filamentous protonema of the mossFunaria hygrometrica were examined using a nonintrusive vibrating microelectrode to map electrical current before and during mitosis. Tip cells in interphase generate inward electrical currents that are maximal at the nuclear region. These currents remain concentrated over the nucleus as it migrates forward maintaining a constant distance from the growing tip. Just prior to mitosis this inward current increases twofold. During mitosis and cytokinesis current at the nuclear zone increases to four times the resting level and fluctuates, falling to zero after cell plate fusion with parental walls. The locus of outward current could not be dectected. These results suggest that plasma membrane ion currents may regulate both nuclear positioning and subsequent temporal and spatial control of cell division.  相似文献   
86.
A novel electrochemical technique was developed to enable high‐resolution measurements of trans‐plasma membrane reductase activity in vivo in growing plant tissue and single cells. Carbon fibre microelectrodes (CFMEs) with a tip diameter of 5 µm were used for electrochemical mapping of the reduction of the external impermeant electron acceptor ferricyanide along the root tip surface of 4‐d‐old maize seedlings. Ferricyanide reduction was detected in all locations along the first 12 mm of the growing root apex. However, a distinct peak in activity was detected at the proximal end of the elongation zone (1·5–4·5 mm from the apex), where reductase activity was three times greater than in more apical or distal regions. The inhibition of the ferricyanide reduction at all locations along the growing apex, by the vitamin K antagonists warfarin and dicumarol, supports previous data showing that electron transfer by the constitutive trans‐plasma membrane reductase is achieved via a quinone shuttle. We demonstrate that in addition to their utility in whole‐tissue/‐organ studies, CFMEs are sensitive enough to monitor trans‐plasma membrane electron transport in single cells.  相似文献   
87.
pH-sensitive liposomes are designed to undergo acid-triggered destabilization. First generation pH-sensitive liposomes, based on the cone-shaped lipid dioleoylphosphatidylethanolamine (DOPE), have been shown to lose fusogenicity in the presence of serum. Here, we report the design and evaluation of novel serum-resistant pH-sensitive liposome formulations that are based on the composition of egg phosphatidylcholine (PC), cholesteryl hemisuccinate (CHEMS), oleyl alcohol (OAlc), and Tween-80 (T-80). When loaded with the fluorescent probe calcein, these liposomes exhibited excellent stability at pH 7.4 and underwent rapid destabilization upon acidification as shown by calcein dequenching and particle size increase. Adjusting the mole percentages of T-80 and OAlc in the formulation could regulate the stability and pH-sensitive properties of these liposomes. Liposomes with a higher T-80 content exhibited greater stability but were less sensitive to acid-induced destabilization. Meanwhile, formulations with a higher OAlc content exhibited greater content release in response to low pH. The pH-triggered liposomal destabilization did not produce membrane fusion according to an octadecylrhodamine B chloride (R18) lipid-mixing assay. Compared to DOPE-based pH-sensitive liposomes, the above formulations showed much better retention of their pH-sensitive properties in the presence of 10% serum. These liposomes were then evaluated for intracellular delivery of entrapped cytosine-β-d-arabinofuranoside (araC) in KB human oral cancer cells, which have elevated folate receptor (FR) expression. The FR, which is amplified in many types of human tumors, has been shown to mediate the internalization of folate-derivatized liposomes into an acidic intracellular compartment. FR-targeted OAlc-based pH-sensitive liposomes, entrapping 200 mM araC, showed ∼17-times greater FR-dependent cytotoxicity in KB cells compared to araC delivered via FR-targeted non-pH-sensitive liposomes. These data indicated that pH-sensitive liposomes based on OAlc, combined with FR-mediated targeting, are promising delivery vehicles for membrane impermeable therapeutic agents.  相似文献   
88.
Conductometric microbiosensors for the determination of trypsin were elaborated via the modification of microfabricated interdigitated gold electrodes by a cross-linked urease/BSA coating covered by a gelatin film. The resulting microelectrodes were exposed to different trypsin concentrations ranging from 100pg/mL to 1mg/mL (1mU/mL to 10,000U/mL) for selective proteolytic degradation of the gelatin film. Then, the conductometric response of the microbiosensors to urea (33muM) was recorded as a function of the trypsin concentration, the gelatin amount (8-80ng) and the incubation time (40s, 100min). The optimum incubation time for each trypsin concentration was determined leading to a detection limit of 100pg/mL (1mU/mL). In these optimized conditions, the proof of concept of this sensitive, disposable, low-cost and label-free trypsin biosensors based on a conductometric transducer was demonstrated for the first time.  相似文献   
89.
Tyrosinase, the key enzyme of melanin biosynthesis, is inactivated in melanoma cells following the incubation with the imino-sugar N-butyldeoxynojirimycin, an inhibitor of the endoplasmic reticulum N-glycosylation processing. We have previously shown that tyrosinase inhibition requires high NB-DNJ concentrations, suggesting an inefficient cellular uptake of the drug. Here we show that the use of pH-sensitive liposomes composed of dioleoylphosphatidylethanolamine and cholesteryl hemisuccinate for the delivery of NB-DNJ reduced the required dose for tyrosinase inhibition by a factor of 1000. The results indicate that these pH-sensitive liposomes are efficient carriers for imino-sugars delivery in the endoplasmic reticulum of mammalian cells.  相似文献   
90.
Multidrug resistance and drug toxicity represent major obstacles to cancer chemotherapy. Drug delivery systems, such as liposomes, offer improved chemical stability of encapsulated drugs, enhanced accumulation in tumors and decreased toxicity. The aim of this study was to evaluate the tissue distribution of stealth pH-sensitive liposomes containing cisplatin (SpHL-CDDP), compared with free cisplatin (CDDP), in solid Ehrlich tumor-bearing mice. After administering a 6 mg/kg single intravenous bolus injection of either free radiolabeled cisplatin or SpHL containing radiolabeled cisplatin, blood and tissues were analyzed for cisplatin content by determining radioactivity using an automatic scintillation apparatus. The area under the CDDP concentration-time curve (AUC) obtained for blood after SpHL-CDDP administration was 2.1 fold larger when compared with free CDDP treatment. The longer circulation of SpHL-CDDP led to a higher tumor AUC, and the determination of the ratio between AUC in each tissue and that in blood (Kp) showed a higher accumulation of CDDP in SpHL-CDDP administrated tumors. The SpHL-CDDP was also significantly uptaken by the liver and spleen. The distribution of SpHL-CDDP in these organs was extensive, revealing a high extravasation of CDDP to the tissues. The SpHL-CDDP kidney uptake was also greater than that of free CDDP; however, the Kp value found was lower. This indicates that the SpHL-CDDP led to a reduction of CDDP retention by renal tissue. Thus, these results indicate that the SpHL-CDDP may indeed be useful in alleviating renal damage induced by CDDP and thus represents a promising delivery system for cancer treatment through CDDP.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号