首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   20篇
  免费   3篇
  国内免费   3篇
  2020年   3篇
  2018年   1篇
  2017年   2篇
  2015年   1篇
  2014年   1篇
  2012年   4篇
  2009年   2篇
  2007年   2篇
  2006年   1篇
  2004年   2篇
  2003年   3篇
  2002年   1篇
  2000年   1篇
  1998年   1篇
  1994年   1篇
排序方式: 共有26条查询结果,搜索用时 31 毫秒
11.
Deoxygenation in coastal and open‐ocean ecosystems rarely exists in isolation but occurs concomitantly with acidification. Here, we first combine meta‐data of experimental assessments from across the globe to investigate the potential interactive impacts of deoxygenation and acidification on a broad range of marine taxa. We then characterize the differing degrees of deoxygenation and acidification tested in our dataset using a ratio between the partial pressure of oxygen and carbon dioxide (pO2/pCO2) to assess how biological processes change under an extensive, yet diverse range of pO2 and pCO2 conditions. The dataset comprised 375 experimental comparisons and revealed predominantly additive but variable effects (91.7%, additive; 6.0%, synergistic; and 2.3%, antagonistic) of the dual stressors, yielding negative impacts across almost all responses examined. Our data indicate that the pO2/pCO2‐ratio offers a simplified metric to characterize the extremity of the concurrent stressors and shows that more severe impacts occurred when ratios represented more extreme deoxygenation and acidification conditions. Importantly, our analysis highlights the need to assess the concurrent impacts of deoxygenation and acidification on marine taxa and that assessments considering the impact of O2 depletion alone will likely underestimate the impacts of deoxygenation events and their ecosystem‐wide consequences.  相似文献   
12.
Effects of free‐air carbon dioxide enrichment (FACE, 60 Pa pCO2) on plant growth as compared with ambient pCO2 (36 Pa) were studied in swards of Lolium perenne L. (perennial ryegrass) at two levels of N fertilization (14 and 56 g m?2 a?1) from 1993 to 2002. The objectives were to determine how plant growth responded to the availability of C and N in the long term and how the supply of N to the plant from the two sources of N in the soil, soil organic matter (SOM) and mineral fertilizer, varied over time. In three field experiments, 15N‐labelled fertilizer was used to distinguish the sources of available N. In 1993, harvestable biomass under elevated pCO2 was 7% higher than under ambient pCO2. This relative pCO2 response increased to 32% in 2002 at high N, but remained low at low N. Between 1993 and 2002, the proportions and amounts of N in harvestable biomass derived from SOM (excluding remobilized fertilizer) were, at high N, increasingly higher at elevated pCO2 than at ambient pCO2. Two factorial experiments confirmed that at high N, but not at low N, a higher proportion of N in harvestable biomass was derived from soil (including remobilized fertilizer) following 7 and 9 years of elevated pCO2, when compared with ambient pCO2. It is suggested that N availability in the soil initially limited the pCO2 response of harvestable biomass. At high N, the limitation of plant growth decreased over time as a result of the stimulated mobilization of N from soil, especially from SOM. Consequently, harvestable biomass increasingly responded to elevated pCO2. The underlying mechanisms which contributed to the increased mobilization of N from SOM under elevated pCO2 are discussed. This study demonstrated that there are feedback mechanisms in the soil which are only revealed during long‐term field experiments. Such investigations are thus, a prerequisite for understanding the responses of ecosystems to elevated pCO2 and N supply.  相似文献   
13.
冬小麦旺盛生长期间CO2浓度升高对根际呼吸的影响   总被引:6,自引:0,他引:6  
寇太记  朱建国  谢祖彬  刘钢  曾青 《生态学报》2007,27(4):1420-1427
依托FACE(free air carbon dioxide enrichment)技术平台,利用阻断根法,采用H6400红外气体分析仪(IRGA)-田间原位测定的方法,研究了大气CO2浓度升高和不同氮肥水平对水稻/小麦轮作制中冬小麦旺盛生长期间根际呼吸的影响。结果表明,在整个测定期间,大气CO2浓度升高增强了根际呼吸速率,提高了根际呼吸排放量。在高N和低N处理中,高CO2浓度下的根际呼吸总排放量分别比Ambient极显著增加117.0%和90.8%。根际呼吸速率在孕穗初期达到最大值;使根际呼吸在土壤呼吸中的比重由24.5%(LN)~26.7(HN)提高到39.8%(LN)~47.1%(HN)。CO2浓度升高与氮肥用量对根际呼吸产生交互效应。表明大气CO2浓度升高将加快土壤向大气的CO2排放,结果将有助于评价未来高CO2浓度背景下农田生态系统土壤碳的固定潜力。  相似文献   
14.
Widespread ocean acidification (OA) is modifying the chemistry of the global ocean, and the Arctic is recognized as the region where the changes will progress at the fastest rate. Moreover, Arctic species show lower capacity for cellular homeostasis and acid‐base regulation rendering them particularly vulnerable to OA. In the present study, we found physiological differences in OA response across geographically separated populations of the keystone Arctic copepod Calanus glacialis. In copepodites stage CIV, measured reaction norms of ingestion rate and metabolic rate showed severe reductions in ingestion and increased metabolic expenses in two populations from Svalbard (Kongsfjord and Billefjord) whereas no effects were observed in a population from the Disko Bay, West Greenland. At pHT 7.87, which has been predicted for the Svalbard west coast by year 2100, these changes resulted in reductions in scope for growth of 19% in the Kongsfjord and a staggering 50% in the Billefjord. Interestingly, these effects were not observed in stage CV copepodites from any of the three locations. It seems that CVs may be more tolerant to OA perhaps due to a general physiological reorganization to meet low intracellular pH during hibernation. Needless to say, the observed changes in the CIV stage will have serious implications for the C. glacialis population health status and growth around Svalbard. However, OA tolerant populations such as the one in the Disko Bay could help to alleviate severe effects in C. glacialis as a species.  相似文献   
15.
The objective of this investigation was to examine the effect of an elevated atmospheric CO2 partial pressure ( p CO2) on the N-sink strength and performance of symbiotic N2 fixation in Trifolium repens L. cv. Milkanova. After initial growth under ambient p CO2 in a nitrogen-free nutrient solution, T. repens in the exponential growth stage was exposed to ambient and elevated p CO2 (35 and 60 Pa) and two levels of mineral N (N-free and 7·5 mol m–3 N) for 36 d in single pots filled with silica sand in growth chambers. Elevated p CO2 evoked a significant increase in biomass production from day 12 after the start of CO2 enrichment. For plants supplied with 7·5 mol m–3 N, the relative contribution of symbiotically fixed N (%Nsym) as opposed to N assimilated from mineral sources (15N-isotope-dilution method), dropped to 40%. However, in the presence of this high level of mineral N, %Nsym was unaffected by atmospheric p CO2 over the entire experimental period. In plants fully dependent on N2 fixation, the increase in N yield reflects a stimulation of symbiotic N2 fixation that was the result of the formation of more nodules rather than of higher specific N2 fixation. These results are discussed with regard to physiological processes governing symbiotic N2 fixation and to the response of symbiotic N2 fixation to elevated p CO2 in field-grown T. repens .  相似文献   
16.
Lactate has long been regarded as one of the key metabolites of mammalian cell cultures. High levels of lactate have clear negative impacts on cell culture processes, and therefore, a great amount of efforts have been made to reduce lactate accumulation and/or to induce lactate consumption in the later stage of cultures. However, there is virtually no report on the impact of lactate depletion after initial accumulation. In this work, we observed that glucose uptake rate dropped over 50% at the onset of lactate consumption, and that catabolism of alanine due to lactate depletion led to ammonium accumulation. We explored the impact of feeding lactate as well as pyruvate to the cultures. In particular, a strategy was employed where CO(2) was replaced by lactic acid for culture pH control, which enabled automatic lactate feeding. The results demonstrated that lactate or pyruvate can serve as an alternative or even preferred carbon source during certain stage of the culture in the presence of glucose, and that by feeding lactate or pyruvate, very low levels of ammonia can be achieved throughout the culture. In addition, low levels of pCO(2) were also maintained in these cultures. This was in strong contrast to the control cultures where lactate was depleted during the culture, and ammonia and pCO(2) build-up were significant. Culture growth and productivity were similar between the control and lactate-fed cultures, as well as various product quality attributes. To our knowledge, this work represents the first comprehensive study on lactate depletion and offers a simple yet effective strategy to overcome ammonia and pCO(2) accumulation that could arise in certain cultures due to early depletion of lactate.  相似文献   
17.
Abstract: Diurnal changes in starch, sugar and amino acid concentrations in source leaves, sink leaves and roots of tobacco plants were determined. In addition to wild type tobacco, transformed plants deficient in root nitrate reductase and exhibiting decreased rates of growth were employed. Further, the growth rates of tobacco plants were modulated by exposure to elevated pCO2. From the diurnal alterations in metabolite concentrations, the daily turnover of starch and amino N was estimated in order to: (i) elucidate whether turnover rates can be related to growth rates, and (ii) identify individual amino compounds with the potential to indicate nitrogen fluxes and the C/N status of plants. Elevated pCO2 increased growth rates and daily turnover of starch in both wild type and transformed plants, indicating enhanced rates of photosynthesis. In wild type plants, elevated pCO2 increased the turnover of amino N, notably glutamine and alanine, in mature source leaves, indicating enhanced nitrate reduction. By contrast, amino N turnover in source leaves of transformed plants was not affected by elevated pCO2, although nitrate reduction was presumably enhanced. Apparently, export of amino N was increased from the source leaves of transformed plants. This assumption was supported by a significantly increased turnover of amino N in young sink leaves compared to mature source leaves, indicating a preference for acropetal amino N allocation and import into the young leaves of the transformed plants. Further, elevated pCO2 increased the allocation of leaf‐derived amino N to the roots of transformed plants. This led to increased levels of amino compounds during the entire day, notably glutamate, but did not affect root growth of the transformed plants. The suitability of individual amino compounds as markers for major N fluxes, such as nitrate reduction, photorespiration, and amino N export and import is discussed.  相似文献   
18.
The worldwide effects of ocean acidification (OA) on marine species are a growing concern. In temperate coastal seas, seaweeds are dominant primary producers that create complex habitats and supply energy to higher trophic levels. Studies on OA and macroalgae have focused on calcifying species and adult stages, but critically, they have overlooked the microscopic stages of the reproductive life cycle, which, for other anthropogenic stressors, e.g., UV‐B radiation, are the most susceptible life‐history phase. Also, environmental cues and stressors can cause changes in the sex ratio, which has implications for the mating system and recruitment success. Here, we report the effects of pH (7.59–8.50) on meiospore germination and sex determination for the giant kelp, Macrocystis pyrifera (Laminariales), in the presence and absence of additional dissolved inorganic carbon (DIC). Lowered pH (7.59–7.60, using HCl‐only) caused a significant reduction in germination, whereas added DIC had the opposite effect, indicating that increased CO2 at lower pH ameliorates physiological stress. This finding also highlights the importance of appropriate manipulation of seawater carbonate chemistry when testing the effects of OA on photosynthetic organisms. The proportion of male to female gametophytes did not vary significantly between treatments, suggesting that pH was not a primary environmental modulator of sex. Relative to the baseline (pH 8.19), gametophytes were 32% larger under moderate OA (pH 7.86) and 10% larger under extreme OA (pH 7.61). We suggest that metabolically active cells can compensate for the acidification of seawater. This homeostatic function minimizes the negative effects of lower pH (high H+ ions) on cellular activity. The 6–9% reduction in germination success under extreme OA suggests that meiospores of M. pyrifera may be resistant to future OA.  相似文献   
19.
The aim of the present study was to analyse whether offspring of mature Quercus ilex trees grown under life‐long elevated pCO2 show alterations in the physiological response to elevated pCO2 in comparison with those originating from mature trees grown at current ambient pCO2. To investigate changes in C‐ (for changes in photosynthesis, biomass and lignin see Polle, McKee & Blaschke Plant, Cell and Environment 24, 1075–1083, 2001), N‐, and S‐metabolism soluble sugar, soluble non‐proteinogenic nitrogen compounds (TSNN), nitrate reductase (NR), thiols, adenosine 5′‐phosphosulphate (APS) reductase, and anions were analysed. For this purpose Q. ilex seedlings were grown from acorns of mother tree stands at a natural spring site (elevated pCO2) and a control site (ambient pCO2) of the Laiatico spring, Central Italy. Short‐term elevated pCO2 exposure of the offspring of control oaks lead to higher sugar contents in stem tissues, to a reduced TSNN content in leaves, and basipetal stem tissues, to diminished thiol contents in all tissues analysed, and to reduced APS reductase activity in both, leaves and roots. Most of the components of C‐, N‐ and S‐metabolism including APS reductase activity which were reduced due to short‐term elevated pCO2 exposure were recovered by life‐long growth under elevated pCO2 in the offspring of spring oaks. Still TSNN contents in phloem exudates increased, nitrate contents in lateral roots and glutathione in leaves and phloem exudates remained reduced in these plants. The present results demonstrated that metabolic adaptations of Q. ilex mother trees to elevated pCO2 can be passed to the next generation. Short‐ and long‐term effects on source‐to‐sink relation and physiological and genetic acclimation to elevated pCO2 are discussed.  相似文献   
20.
珊瑚礁区碳循环研究进展   总被引:5,自引:0,他引:5  
严宏强  余克服  谭烨辉 《生态学报》2009,29(11):6207-6215
珊瑚礁是海洋中生产力水平最高的生态系统之一,其碳循环受到有机碳代谢(光合作用/呼吸作用)和无机碳代谢(钙化/溶解)两大代谢过程的共同作用,过程十分复杂.珊瑚礁植物的光合作用保证了有机碳的有效补充,动物摄食及微生物降解等生物过程驱动了珊瑚礁区有机碳高效循环,只有不超过7%的有机碳进入沉积物,而向大洋区水平输出的有机碳通量变化幅度较大,主要受到水动力条件的影响.珊瑚礁区碳酸盐沉积(无机碳代谢)是全球碳酸盐库的重要组成部分,年累积量达到全球CaCO3年累积量的23%~26%,是影响大气CO2浓度的重要组成;珊瑚礁是大气CO2源或汇则取决于净有机生产力与净无机生产力的比值(ROI),当ROI <0.6时,珊瑚礁区是大气CO2的源,反之,则是大气CO2的汇.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号