首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   700篇
  免费   79篇
  国内免费   93篇
  2024年   2篇
  2023年   13篇
  2022年   12篇
  2021年   15篇
  2020年   26篇
  2019年   20篇
  2018年   28篇
  2017年   19篇
  2016年   28篇
  2015年   27篇
  2014年   28篇
  2013年   63篇
  2012年   30篇
  2011年   43篇
  2010年   28篇
  2009年   37篇
  2008年   46篇
  2007年   59篇
  2006年   49篇
  2005年   34篇
  2004年   32篇
  2003年   32篇
  2002年   25篇
  2001年   10篇
  2000年   24篇
  1999年   17篇
  1998年   12篇
  1997年   14篇
  1996年   10篇
  1995年   6篇
  1994年   4篇
  1993年   7篇
  1992年   5篇
  1991年   6篇
  1990年   7篇
  1989年   2篇
  1988年   2篇
  1987年   4篇
  1986年   1篇
  1985年   3篇
  1984年   9篇
  1983年   4篇
  1982年   11篇
  1981年   4篇
  1980年   4篇
  1979年   1篇
  1978年   1篇
  1976年   5篇
  1973年   2篇
  1972年   1篇
排序方式: 共有872条查询结果,搜索用时 31 毫秒
41.
Alkaline nitrobenzene oxidation, ozonation and methoxyl content determinations were applied to decomposing leaf litter of Ginkgo biloba L., Cinnamomum camphora sieb., Zelkova serrata Makino and Firmiana simplex W. F. Wight, respectively, during mulching to investigate the properties and estimate changes in lignin composition and content. Since the Klason lignin residue originated from components highly resistant to degradation by acid, the methoxyl content of Klason residue was used to estimate the lignin content of leaf litter. Quantitative analysis of presumed lignin-derived fragments, by use of alkaline nitrobenzene oxidation and ozonation methods, suggested that the estimated lignin content approximates that of the real lignin content of leaves, which is greatly overestimated by the Klason procedure. The estimated lignin contents ranged from 3.9 to 10.0% while the Klason lignan residue varied from 37.1 to 46.7% in un-mulched leaf litter. The absolute amounts of the measured lignin somewhat decreased during mulching, while the structure of lignin remaining in leaf litters after mulching was considered not to be very different from its original structure.  相似文献   
42.
Asp142 in the homotetrameric ADP-glucose pyrophosphorylase (ADP-Glc PPase) enzyme from Escherichia coli was demonstrated to be involved in catalysis of this enzyme [Frueauf, J.B., Ballicora, M.A. and Preiss J. (2001) J. Biol. Chem., 276, 46319-46325]. The residue is highly conserved throughout the family of ADP-Glc PPases, as well as throughout the super-family of sugar-nucleotide pyrophosphorylases. In the heterotetrameric ADP-Glc PPase from potato (Solanum tuberosum L.) tuber, the homologous residue is present in both the small (Asp145) and the large (Asp160) subunits. It has been proposed that the small subunit of plant ADP-Glc PPases is catalytic, while the large subunit is modulatory; however, no catalytic residues have been identified. To investigate the function of these conserved Asp residues in the ADP-Glc PPase from potato tuber, we used site-directed mutagenesis to introduce either an Asn or a Glu. Kinetic analysis in the direction of synthesis or pyrophosphorolysis of ADP-Glc showed a significant decrease (more than four orders of magnitude) in the specific activity of the SD145NLwt, SD145NLD160N, and SD145NLD160E mutants, while the effect was smaller (approximately two orders of magnitude) with the SD145ELwt, SD145ELD160N, and SD145ELD160E mutants. By contrast, mutation of the large subunit alone did not affect the specific activity but did alter the apparent affinity for the activator 3-phosphoglycerate, showing two types of apparent roles for this residue in the different subunits. These results show that mutation of Asp160 of the large subunit does not affect catalysis, thus the large subunit is not catalytic, and that the negative charge of Asp145 in the small subunit is necessary for enzyme catalysis.  相似文献   
43.
The denaturant-induced (un)folding of apoflavodoxin from Azotobacter vinelandii has been followed at the residue level by NMR spectroscopy. NH groups of 21 residues of the protein could be followed in a series of 1H-15N heteronuclear single-quantum coherence spectra recorded at increasing concentrations of guanidinium hydrochloride despite the formation of protein aggregate. These NH groups are distributed throughout the whole apoflavodoxin structure. The midpoints of unfolding determined by NMR coincide with the one obtained by fluorescence emission spectroscopy. Both techniques give rise to unfolding curves with transition zones at significantly lower denaturant concentrations than the one obtained by circular dichroism spectroscopy. The NMR (un)folding data support a mechanism for apoflavodoxin folding in which a relatively stable intermediate is involved. Native apoflavodoxin is shown to cooperatively unfold to a molten globule-like state with extremely broadened NMR resonances. This initial unfolding step is slow on the NMR chemical shift timescale. The subsequent unfolding of the molten globule is faster on the NMR chemical shift timescale and the limited appearance of 1H-15N HSQC cross peaks of unfolded apoflavodoxin in the denaturant range studied indicates that it is noncooperative.  相似文献   
44.
Oil residues containing high molecular mass hydrocarbons, rich in polyaromatic compounds, are frequent end-products of crude oil processing and are poorly biodegradable. Their disposal poses an environmental problem. Through batch-enrichments from contaminated soils we have isolated and characterized seven bacterial strains that can use a residue from crude oil processing as a source of carbon and energy. The residue was a complex mixture of high molecular mass compounds, including saturated, aromatic and polycyclic aromatic hydrocarbons (PAHs). Analysis of the metabolic profiles of the strains isolated showed that they could all metabolize long-chain-length alkanes efficiently, but not PAHs. Strains degrading naphthalene, a simple PAH, did exist in the soil inocula used, but could be isolated only when enrichments were performed using pure naphthalene as the sole carbon source. All strains tested emulsified the oil residue and their ability to produce surfactants was studied.  相似文献   
45.
ZBARSKYIB 《Cell research》1998,8(2):99-103
The nonchromatin proteinous residue of the cell nucleus was revealed in our laboratory as early as in 1948 and then identified by light and electron microscopy as residual nucleoli,intranuclear network and nuclear envelope before 1960,This structure termed afterwards as “nuclear residue“,“nuclear skeleton“,“nuclear cage“,“nuclear carcass“etc.,was much later(in 1974) isolated,studied and entitled as “nuclear matrix“ by Berezney and Coffey,to whom the discovery of this residual structure is often wronly ascribed.The real history of nuclear matrix manifestation is reported in this paper.  相似文献   
46.
A detailed analysis of high‐resolution structural data and computationally predicted dynamics was carried out for a designed sugar‐binding protein. The mean‐square deviations in the positions of residues derived from nuclear magnetic resonance (NMR) models and those inferred from X‐ray crystallographic B‐factors for two different crystal forms were compared with the predictions based on the Gaussian Network Model (GNM) and the results from molecular dynamics (MD) simulations. GNM systematically yielded a higher correlation than MD, with experimental data, suggesting that the lack of atomistic details in the coarse‐grained GNM is more than compensated for by the mathematically exact evaluation of fluctuations using the native contacts topology. Evidence is provided that particular loop motions are curtailed by intermolecular contacts in the crystal environment causing a discrepancy between theory and experiments. Interestingly, the information conveyed by X‐ray crystallography becomes more consistent with NMR models and computational predictions when ensembles of X‐ray models are considered. Less precise (broadly distributed) ensembles indeed appear to describe the accessible conformational space under native state conditions better than B‐factors. Our results highlight the importance of using multiple conformations obtained by alternative experimental methods, and analyzing results from both coarse‐grained models and atomic simulations, for accurate assessment of motions accessible to proteins under native state conditions. Proteins 2009. © 2009 Wiley‐Liss, Inc.  相似文献   
47.
Sweet corn is a widely distributed crop that generates agricultural waste without significant commercial value. In this study, we show that sweet corn varieties produce large amounts of residual biomass (10 t ha?1) with high content of soluble sugars (25% of dry matter) in a short growing season (3 months). The potential ethanol production from structural and soluble sugars extracted from sweet corn stover reached up to 4400 l ha?1 in the most productive hybrids, 33% of which (1500 l ha?1) were obtained by direct fermentation of free sugars. We found wide genetic variation for biomass yield and soluble sugars content suggesting that those traits can be included as complementary traits in sweet corn breeding programs. Dual‐purpose sweet corn hybrids can have an added value for the farmers contributing to energy generation without affecting food supply or the environment.  相似文献   
48.
Nitrogen fertilizer and harvest management will alter soils under bioenergy crop production and the long‐term effects of harvest timing and residue removal remain relatively unknown. Compared to no‐tilled corn (NT‐C, Zea mays L.), switchgrass (Panicum virgatum L.) is predicted to improve soil properties [i.e. soil organic C (SOC), soil microbial biomass (SMB‐C), and soil aggregation] due to its perennial nature and deep‐rooted growth form, but few explicit field comparisons exist. We assessed soil properties over 9 years for a rainfed study of N fertilizer rate (0, 60, 120, and 180 kg N ha?1) and harvest management on switchgrass (harvested in August and postfrost) and NT‐C (with and without 50% stover removal) in eastern NE. We measured SOC, aggregate stability, SMB‐C, bulk density (BD), pH, P and K in the top 0–30 cm. Both NT‐C and switchgrass increased SMB‐C, SOC content, and aggregate stability over the 9 years, reflecting improvement from previous conventional management. However, the soils under switchgrass had double the percent aggregate stability, 1.3 times more microbial biomass, and a 5–8% decrease in bulk density in the 0–5 and 5–10 cm depths compared to NT‐C. After 9 years, cumulative decrease in available P was significantly greater beneath NT‐C (?24.0 kg P ha?1) compared to switchgrass (?5.4 kg P ha?1). When all measured soil parameters were included in the Soil Management Assessment Framework (SMAF), switchgrass improved soil quality index over time (ΔSQI) in all depths. NT‐C without residue removal did not affect ΔSQI, but 50% residue removal decreased ΔSQI (0–30 cm) due to reduced aggregate stability and SMB‐C. Even with best‐management practices such as NT, corn stover removal will have to be carefully managed to prevent soil degradation. Long‐term N and harvest management studies that include biological, chemical, and physical soil measurements are necessary to accurately assess bioenergy impacts on soils.  相似文献   
49.
The use of crop residues for bioenergy production needs to be carefully assessed because of the potential negative impact on the level of soil organic carbon (SOC) stocks. The impact varies with environmental conditions and crop management practices and needs to be considered when harvesting the residue for bioenergy productions. Here, we defined the sustainable harvest limits as the maximum rates that do not diminish SOC and quantified sustainable harvest limits for wheat residue across Australia's agricultural lands. We divided the study area into 9432 climate‐soil (CS) units and simulated the dynamics of SOC in a continuous wheat cropping system over 122 years (1889 – 2010) using the Agricultural Production Systems sIMulator (APSIM). We simulated management practices including six fertilization rates (0, 25, 50, 75, 100, and 200 kg N ha?1) and five residue harvest rates (0, 25, 50, 75, and 100%). We mapped the sustainable limits for each fertilization rate and assessed the effects of fertilization and three key environmental variables – initial SOC, temperature, and precipitation – on sustainable residue harvest rates. We found that, with up to 75 kg N ha?1 fertilization, up to 75% and 50% of crop residue could be sustainably harvested in south‐western and south‐eastern Australia, respectively. Higher fertilization rates achieved little further increase in sustainable residue harvest rates. Sustainable residue harvest rates were principally determined by climate and soil conditions, especially the initial SOC content and temperature. We conclude that environmental conditions and management practices should be considered to guide the harvest of crop residue for bioenergy production and thereby reduce greenhouse gas emissions during the life cycle of bioenergy production.  相似文献   
50.
Dipeptidyl peptidases III (DPPs III) form a distinct metallopeptidase family characterized by the unique HEXXGH motif. High susceptibility to inactivation by organomercurials suggests the presence of a reactive cysteine residue(s) in, or close to, their active site. Yeast DPP III contains five Cys, none of which is absolutely conserved within the family. In order to identify reactive residue(s), site-directed mutagenesis on yeast His6-tagged DPP III was employed to substitute specifically all five cysteine residues to serine. The variant enzymes thus obtained were enzymatically active and showed an overall structure not greatly affected by the mutations as judged by circular dichroism. Analysis by native and SDS-PAGE under non-reducing conditions revealed the existence of a monomeric and dimeric form in all DPP III proteins except in the C130S, implying that dimerization of yeast DPP III is mediated by the surface-exposed cysteine 130.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号