首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   700篇
  免费   79篇
  国内免费   93篇
  2024年   2篇
  2023年   13篇
  2022年   12篇
  2021年   15篇
  2020年   26篇
  2019年   20篇
  2018年   28篇
  2017年   19篇
  2016年   28篇
  2015年   27篇
  2014年   28篇
  2013年   63篇
  2012年   30篇
  2011年   43篇
  2010年   28篇
  2009年   37篇
  2008年   46篇
  2007年   59篇
  2006年   49篇
  2005年   34篇
  2004年   32篇
  2003年   32篇
  2002年   25篇
  2001年   10篇
  2000年   24篇
  1999年   17篇
  1998年   12篇
  1997年   14篇
  1996年   10篇
  1995年   6篇
  1994年   4篇
  1993年   7篇
  1992年   5篇
  1991年   6篇
  1990年   7篇
  1989年   2篇
  1988年   2篇
  1987年   4篇
  1986年   1篇
  1985年   3篇
  1984年   9篇
  1983年   4篇
  1982年   11篇
  1981年   4篇
  1980年   4篇
  1979年   1篇
  1978年   1篇
  1976年   5篇
  1973年   2篇
  1972年   1篇
排序方式: 共有872条查询结果,搜索用时 15 毫秒
31.
CORA is a suite of programs for multiply aligning and analyzing protein structural families to identify the consensus positions and capture their most conserved structural characteristics (e.g., residue accessibility, torsional angles, and global geometry as described by inter-residue vectors/contacts). Knowledge of these structurally conserved positions, which are mostly in the core of the fold and of their properties, significantly improves the identification and classification of newly-determined relatives. Information is encoded in a consensus three-dimensional (3D) template and relatives found by a sensitive alignment method, which employs a new scoring scheme based on conserved residue contacts. By encapsulating these critical "core" features, templates perform more reliably in recognizing distant structural relatives than searches with representative structures. Parameters for 3D-template generation and alignment were optimized for each structural class (mainly-alpha, mainly-beta, alpha-beta), using representative superfold families. For all families selected, the templates gave significant improvements in sensitivity and selectivity in recognizing distant structural relatives. Furthermore, since templates contain less than 70% of fold positions and compare fewer positions when aligning structures, scans are at least an order of magnitude faster than scans using selected structures. CORA was subsequently tested on eight other broad structural families from the CATH database. Diagnostics plots are generated automatically and provide qualitative assistance for classifying newly determined relatives. They are demonstrated here by application to the large globin-like fold family. CORA templates for both homologous superfamilies and fold families will be stored in CATH and used to improve the classification and analysis of newly determined structures.  相似文献   
32.
Besides residue of the catalytic triad that is conserved in the short-chain dehydrogenase/reductase (SDR) superfamily, a Cys side chain reportedly plays functional roles in NADP-dependent 15-hydroxyprostaglandin dehydrogenase and human carbonyl reductase (CR). The three-dimensional structure of porcine 3alpha/beta,20beta-hydroxysteroid dehydrogenase, also known as porcine testicular carbonyl reductase, demonstrates the proximity of the Cys 226 side chain to the bound NADP. However, no clear explanation with respect to the basis of the catalytic function of the Cys residue is yet available. By chemical modification, point mutation, and kinetic analysis, we determine that two Cys residues, Cys 149 and Cys 226, are involved in the enzyme activity. Furthermore, we found that pretreatment with NADP markedly protects the enzyme from inactivation by 4-(hydroxyl mercury) benzoic acid (4-HMB), thereby confirming that Cys 226 is involved in binding of the cofactor. On the basis of the tertiary structure of 3alpha/beta,20beta-HSD, the possible roles of Cys residues, especially that of Cys 226, in enzyme action and in the binding of cofactor NADPH are discussed.  相似文献   
33.
G-protein-coupled receptor (GPCR) is one of the most important targets for medicines. Homology modeling based on the crystal structure of bovine rhodopsin is currently the most frequently used method for GPCR targeted drug design. Information about residue-residue contacts and the structural specificity in the subfamily is essential for constructing more precise 3D structures, to distinguish the structural differences between the template and targets. In this study, we adopted the covariation analysis to extract information about residue-residue interactions from the amino acid sequence. In the opsin family, a large number of adjacent covarying residue pairs were detected. The detected residue pairs have a strong tendency to gather in some regions important for the structure and function. These results suggest that the covariation analysis is practically utilized to detect adjacent residue pairs and also to apply for predicting functional sites. Analyses of other GPCR subfamilies, olfactory receptor and chemokine receptor families, demonstrated that some adjacent covarying residue pairs were common. Thus, the covariation analysis has possibilities in the substantial improvement of the 3D-structure modeling of GPCRs and in the detection of functional sites such as the ligand-binding sites.  相似文献   
34.
Starting from the hypothesis that evolutionarily important residues form a spatially limited cluster in a protein's native fold, we discuss the possibility of detecting a non-native structure based on the absence of such clustering. The relevant residues are determined using the Evolutionary Trace method. We propose a quantity to measure clustering of the selected residues on the structure and show that the exact values for its average and variance over several ensembles of interest can be found. This enables us to study the behavior of the associated z-scores. Since our approach rests on an analytic result, it proves to be general, customizable, and computationally fast. We find that clustering is indeed detectable in a large representative protein set. Furthermore, we show that non-native structures tend to achieve lower residue-clustering z-scores than those attained by the native folds. The most important conclusion that we draw from this work is that consistency between structural and evolutionary information, manifested in clustering of key residues, imposes powerful constraints on the conformational space of a protein.  相似文献   
35.
Without the presence of a phosphotyrosyl group, a phage library derived non-phosphorylated cyclic peptide ligand of Grb2-SH2 domain attributed its high affinity and specificity to well-defined and highly favored interactions of its structural elements with the binding pocket of the protein. We have disclosed a significant compensatory role of the Glu(2-) sidechain for the absence of the phosphate functionality on Tyr(0) in the peptide ligand, cyclo(CH(2)CO-Glu(2-)-Leu-Tyr(0)-Glu-Asn-Val-Gly-Met(5+)-Tyr-Cys)-amide (termed G1TE). In this study, we report the importance of hydrophobic residue at the Tyr+5 site in G1TE. Both acidic and basic amino acid substitutes are disfavored at this position, and replacement of Met with beta-tert-butyl-Ala was found to improve the antagonist properties. Besides, the polarity of the cyclization linkage was implicated as important in stabilizing the favored binding conformation. Oxidation of the thioether linkage into sulfoxide facilitated the binding to Grb2-SH2 markedly. Simultaneous modification of the three distant sites within G1TE provided the best agent with an IC(50) of 220 nM, which is among the most potent non-phosphorous- and non-phosphotyrosine-mimic containing Grb2-SH2 domain inhibitors yet reported. This potent peptidomimetic provides a novel template for the development of chemotherapeutic agents for the treatment of erbB2-related cancer. Biological assays on G1TE(Gla(2-)) in which the original residue of Glu(2-) was substituted by gamma-carboxyglutamic acid (Gla) indicated that it could inhibit the interaction between activated GF receptor and Grb2 protein in cell homogenates of MDA-MB-453 breast cancer cells at the 2 microM level. More significantly, both G1TE(Gla(2-)) alone and the conjugate of G1TE(Gla(2-)) with a peptide carrier can effectively inhibit intracellular association of erbB2 and Grb2 in the same cell lines with IC(50) of 50 and 2 microM, respectively.  相似文献   
36.
Human arylamine N-acetyltransferase 1 (NAT1) is a polymorphic phase II xenobiotic-metabolizing enzyme which catalyzes the biotransformation of primary aromatic amines, hydrazine drugs, and carcinogens. Structural and functional studies have shown that the NAT1 and factor XIII transglutaminase catalytic pockets are structurally related with the existence of a conserved catalytic triad (Cys-His-Asp). In addition, it has been reported that factor XIII transglutaminase activity could be regulated by nitric oxide (NO), in particular S-nitrosothiols (RSNO). We thus tested whether NAT1 could be a target of S-nitrosothiols. We show here that human NAT1 is reversibly inactivated by S-nitrosothiols such as SNAP (S-nitroso-N-acetyl-DL-penicillamine). A second-order rate constant for the inactivation of NAT1 by SNAP was determined (k(inact)=270M(-1)min(-1)) and shown to be in the same range of values reported for other enzymes. The inhibition of NAT1 by S-nitrosothiols was reversed by dithiothreitol and reduced glutathione, but not by ascorbate. As reported for some reactive cysteine-containing enzymes, our results suggest that inactivation of NAT1 by S-nitrosothiols is due to direct attack of the highly reactive cysteine residue in the enzyme active site on the sulfur of S-nitrosothiols to form a mixed disulfide between these NO-derived oxidants and NAT1. Finally, our findings suggest that, in addition to the polymorphic-dependent variation of NAT1 activity, NO-derived oxidants, in particular S-nitrosothiols, could also regulate NAT1 activity.  相似文献   
37.
It is widely accepted that solvent-exposed sites in proteins play only a negligible role in determining protein energetics. In this paper we show that amino acid substitutions at the fully exposed Lys15 in bovine pancreatic trypsin inhibitor (BPTI) influenced the CD- and DSC-monitored stability: The T(den) difference between the least (P1 Trp) and the most stable (P1 His) mutant is 11.2 degrees C at pH 2.0. The DeltaH(den) versus T(den) plot for all the variants at three pH values (2.0, 2.5, 3.0) is linear (DeltaC(p,den) = 0.41 kcal* mole(-1) * K(-1); 1 cal = 4.18 J) leading to a DeltaG(den) difference of 2.1 kcal*mole(-1). Thermal denaturation of the variants monitored by CD signal at pH 2.0 in the presence of 6 M GdmCl again showed differences in their stability, albeit somewhat smaller (DeltaT(den) =7.1 degrees C). Selective reduction of the Cys14-Cys 38 disulfide bond, which is located in the vicinity of the P1 position did not eliminate the stability differences. A correlation analysis of the P1 stability with different properties of amino acids suggests that two mechanisms may be responsible for the observed stability differences: the reverse hydrophobic effect and amino acid propensities to occur in nonoptimal dihedral angles adopted by the P1 position. The former effect operates at the denatured state level and causes a drop in protein stability for hydrophobic side chains, due to their decreased exposure upon denaturation. The latter factor influences the native state energetics and results from intrinsic properties of amino acids in a way similar to those observed for secondary structure propensities. In conclusion, our results suggest that the protein-stability-derived secondary structure propensity scales should be taken with more caution.  相似文献   
38.
39.
40.
Attempts at predicting the relative axial alignments of fibrous protein molecules in filamentous structures have relied upon representing the (multichain) molecular structure by a one-dimensional sequence of amino acids. Potential intermolecular ionic and apolar interactions were counted and determined as a function of the relative axial stagger between the molecules. No attempts were made to consider the azimuthal aspect of the interacting molecules and neither were apolar or ionic energy terms used. Surprisingly, this simple approach proved remarkably informative and yielded accurate predictions of the axial periods present. However, a more comprehensive analysis involving the energetics of aggregation taking due regard for the relative azimuths of the molecules as well as their separation should decrease the noise level in the calculations and reveal other pertinent information. Toward that end, we have modeled the interaction between two alpha-helical coiled-coil segments in intermediate filament molecules (1B segments from human vimentin). The relative axial alignment and polarity of the molecules is already known from detailed crosslinking studies and this provides a criterion against which the success (or otherwise) of the modeling can be judged. The results confirm that an antiparallel alignment of two 1B segments is preferred over any of the parallel options (as observed experimentally). The calculated axial alignment, however, is not identical to that observed from detailed crosslinking studies indicating that other parts of the molecule (probably the head and tail domains as well as other coiled-coil segments) have a crucial role in determining the precise mode of axial aggregation. The results also show that the apolar interactions seem to be significantly less important in the alignment process than the ionic ones. This is consistent with the observation of a well-defined period in the linear disposition of the charged (but not apolar) residues along the length of the outer surface of the vimentin molecule.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号