首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12138篇
  免费   842篇
  国内免费   601篇
  2024年   25篇
  2023年   154篇
  2022年   161篇
  2021年   268篇
  2020年   398篇
  2019年   467篇
  2018年   451篇
  2017年   339篇
  2016年   348篇
  2015年   404篇
  2014年   682篇
  2013年   1145篇
  2012年   414篇
  2011年   700篇
  2010年   390篇
  2009年   582篇
  2008年   551篇
  2007年   659篇
  2006年   564篇
  2005年   518篇
  2004年   425篇
  2003年   460篇
  2002年   367篇
  2001年   266篇
  2000年   219篇
  1999年   207篇
  1998年   213篇
  1997年   200篇
  1996年   180篇
  1995年   203篇
  1994年   172篇
  1993年   194篇
  1992年   191篇
  1991年   137篇
  1990年   109篇
  1989年   151篇
  1988年   83篇
  1987年   95篇
  1986年   59篇
  1985年   81篇
  1984年   65篇
  1983年   44篇
  1982年   61篇
  1981年   43篇
  1980年   23篇
  1979年   29篇
  1978年   31篇
  1977年   20篇
  1976年   14篇
  1973年   6篇
排序方式: 共有10000条查询结果,搜索用时 765 毫秒
41.
For three acid soils from Santa Catarina, Brazil, lime application and time of incubation with lime had little effect on the adsorption of added phosphorus. In two soils with high contents of exchangeable aluminium, solution P and isotopically exchangeable P were decreased by incubating with lime for 1 month: phosphorus was probably adsorbing on freshly precipitated aluminium hydrous oxides. In one soil with less exchangeable aluminium, P in solution was increased by liming. After 23 months lime increased solution and exchangeable P possibly due to crystallization of aluminium hydrous oxides reducing the number of sites for P adsorption. All these changes were however small. In a pot experiment, lime and phosphorus markedly increased barley shoot and root dry matter and P uptake. Although liming reduced P availability measured by solution P, isotopically exchangeable P and resin extractable P, it increased phosphorus uptake by reducing aluminium toxicity and promoting better root growth. The soil aluminium saturation was reduced by liming, but the concentration of aluminium in roots changed only slightly. The roots accumulated aluminium without apparently being damaged.  相似文献   
42.
Seedlings of 14 species were grown for 14–28 days on nutrient solution with 6 mmol.l−1 NH4 as the sole nitrogen source. Solutions acidity was were kept constant at pH 4.0, 5.0, 6.0 and 7.0 by continuous titration with diluted KOH. The following species were used: barley, maize, oats sorghum, yellow and white lupin, pea, soybean, carrot, flax, castor-oil, spinach, sugarbeet and sunflower. Most plant species grew optimally at pH 6.0 with slight reductions at pH 5.0. Growth of many species was severely inhibited at pH 4.0, but this inhibition was not observed with the legume and cereal species. Yield depressions at pH 4.0 relative to pH 6.0 were well correlated with the respective relative decreases of the K concentration in their roots (P<0.002). In the roots of two species (sunflower and flax) total N concentrations were also strongly reduced at pH 4.0. apparently, the interactions between uptake of K, NH4 and H ions become the prevalent problem at suboptimal pH. At pH 7.0, yields were also considerably decreased, with the exception of the lupines. At this pH, the roots of the growth inhibited plants were characterized by increased levels of total N and free NH4. It is thought that the binding capacity of the roots for NH4 is an important factor in preventing NH4/NH3 toxicity at supraoptimal pH.  相似文献   
43.
When detergent-derived photosystem II (PSII) membranes are treated with CaCl2 to remove the three extrinsic proteins associated with the O2-evolving complex, the resulting membranes (CaPSII) can still catalyze water oxidation if sufficient Ca2+ and Cl- are present. When CaPSII membranes are exposed to single turnover flashes on an O2 rate electrode, anomalous O2 is produced by the first two flashes. The addition of catalase to the membrane suspension completely inhibits O2 produced by the first two flashes, but not by subsequent flashes. Exogenous H2O2 stimulates anomalous O2 production by the first few flashes in CaPSII membranes, but not in control PSII membranes. Diuron (DCMU) does not inhibit H2O2-stimulated O2 production by the first flash. However, it does inhibit the O2 yield of all subsequent flashes, indicating that all flash-induced O2 signals in CaPSII membranes are dependent on photosystem II electron transport. H2O2 stimulation of O2 yields is inhibited in Tris-, heat-, and EDTA-(ethylenediaminetetraacetic acid)-treated CaPSII. In the presence of high salt, H2O2 (but not EDTA) treatment of CaPSII, extracts Mn functional in normal photosynthetic O2 evolution. The addition of exogenous Mn2+ reconstitutes anomalous O2 production in Tris-and H2O2/EDTA-treated CaPSII preparations but only in the presence of H2O2. Anomalous H2O2-stimulated O2 production can be observed both with a Clark electrode (steady state) and an O2 rate electrode (flash sequence). The mechanism involves electron donation from H2O2, mediated by free Mn2+, to PSII, and the 33-kDa extrinsic protein under some conditions can block this process. Since H2O2 can remove functional Mn from CaPSII membranes, its presence can convert functional Mn to the Mn2+ mediator state required for anomalous O2 production. EDTA binds Mn in CaPSII disrupted by H2O2 and prevents anomalous O2 evolution.Abbreviations CaPSII a PSII preparation washed with approximately 1M CaCl2 - Chl chlorophyll - DCBQ 2,6-dichloro-p-benzoquinone - DCMU (diuron) 3-(3,4-dichlorophenyl)-1,1-dimethylurea - EDTA ethylenediaminetetraacetic acid - MES 2-[N-morpholino]-ethanesulfonic acid - PSII a detergent-derived photosystem II membrane preparation - RC reaction center - Tris tris(hydroxymethyl)-aminomethane - Yn oxygen rate electrode flash yield resulting from the nth flash of a sequence of single turnover flashes of light Operated by the Midwest Research Institute for the U.S. Department of Energy under contract DE-AC02-83CH10093.  相似文献   
44.
45.
本实验在14只麻醉开胸狗心脏上观察了氟碳乳剂与右旋糖酐稀释血液对心肌耗氧量与供应缺血心肌氧量关系的影响。以左室压力-时间指数(SPTI)作为心肌耗氧量的指标,根据冠脉有效侧支血流量(ECF)、PaO_2和 Hb 浓度计算供应缺血心肌的氧量。实验结果表明,低分子右旋糖酐稀释血液后,SPTI 暂时性轻度增加(稀释后30min 时较对照增加7.1±2.7%,P<0.05,稀释后60min 时增加2.8±1.2%,P>0.05),ECF 明显增多(稀释后30min 时较对照增加58.5±6.1%,P<0.01),缺血区边缘心肌氧供需关系未发生明显变化。氟碳乳剂稀释血液后,SPTI 的变化规律与右旋糖酐稀释后相同(稀释后30min 和60min 时分别较对照增加2.5±0.7%和1.9±0.8%)ECF 和 PaO_2升高(稀释后30min 时分别较对照增加53.9±6.7%和93±8.9%),供应缺血心肌的氧量显著增加,缺血区边缘心肌氧供需矛盾明显改善。  相似文献   
46.
We have shown, in a preliminary report, that macrophages can induce strand breaks in the DNA of co-cultured tumor cells (Chong et al., 1988). The present study is designed to determine if oxygen-centered species generated by the cell-free enzyme-substrate combination of hypoxanthine and xanthine oxidase can induce similar lesions and to identify the specific mediator(s). We report that co-incubation of murine mammary tumor cell lines with hypoxanthine and xanthine oxidase leads to the induction of DNA-strand breaks as determined by fluorescence analysis of DNA unwinding (FADU) assay or alkaline elution techniques. This damage is preventable by catalase which removes hydrogen peroxide but no protection is provided by agents to remove or prevent the formation of superoxide anion (superoxide dismutase), or hydroxyl radical (mannitol or the iron chelator o-phenanthroline). Likewise, cyclooxygenase or lipoxygenase inhibitors of arachidonate metabolism (indomethacin, nordihydroguaiaretic acid, caffeic acid) or bromophenacyl bromide do not alter the degree of DNA scission. Treatment with higher doses of oxygen species leads to significant toxicity as determined by evaluation of cell growth potential or colony-forming ability. Again, toxicity is prevented only by the presence of catalase. Tumor cells are able to rejoin strand breaks at lower, less toxic doses. When comparing different tumor cell subpopulations at various stages of progression, i.e., metastatic vs. nonmetastatic, for sensitivity to hydrogen peroxide-induced strand breakage, we found that at lower concentrations (less than 5μM) metastatic populations are sensitive whereas nonmetastatic populations exhibit no significant breakage. At higher concentrations of hydrogen peroxide, all lines were sensitive, suggesting that a lower threshold of sensitivity may exist for more progressed tumour cell lines.  相似文献   
47.
The activity of glutamine synthetase (GS) in mustard ( Sinapis alba L.) and Scots pine ( Pinus sylvestris L.) seedlings was used as an index to evaluate the capacity to cope with excessive ammonium supply. In these 2 species GS activity was differently affected by the application of nitrogen compounds (NH4+ or NO3). Mustard seedlings older than 5 days showed a considerable increase in GS activity after NH4+ or NO3 application. This response was independent of the energy flux, but GS activity in general was positively affected by light. Endogenous NH4+ did not accumulate greatly after nitrogen supply. In contrast, seedlings of Scots pine accumulated NH4+ in cotyledons and roots and showed no stimulation of GS activity after the application of ammonium. In addition, root growth was drastically reduced. Thus, the pine seedlings seem to have insufficient capacity to assimilate exogenously supplied ammonium. NO3, however, did not lead to any harmful effects.  相似文献   
48.
Alfalfa (Medicago sativa L.) growth and nodulation in acid soil is reduced because the plant and its bacterial symbiontRhizobium meliloti cannot tolerate acid, aluminum-rich soil. A study was conducted to determine if a relatively acid-tolerant alfalfa germplasm combined with a relatively acid-tolerantR. meliloti strain could overcome these limitations. In a light room study, an acid-tolerant alfalfa germplasm inoculated with a more acid-tolerantR. meliloti strain produced greater top growth, nodule number and weight, and acetylene reduction values in an unlimed soil (pH 4.6) than the same germplasm inoculated with a relatively acid-sensitiveR. meliloti strain or an acid-sensitive germplasm inoculated with either a relatively acid-tolerant or acid-sensitiveR. meliloti strain.  相似文献   
49.
In vivo effect of abscisic acid (ABA) on photosynthetic oxygen evolution was investigated in barley chloroplasts. The most important kinetic parameters of O2-producing reactions were changed. The results show inhibition of the O2-flash yields at ABA concentrations of 10 mol/l and 100 mol/l and an increase in the degree of damping of the oscillations. ABA has a marked effect on the distribution of the oxygenevolving centers in S0 and S1 states and on sum of the centers (S0+S1) estimated according to the Kok model. In addition, the amplitude and the shape of the initial oxygen burst under continuous illumination are also significantly altered. At a concentration of 100 mol/l, ABA strongly inhibits Hill reaction activity measured by DCPIP reduction. The results cannot be explained by the hypothesis of socalled stomata effect. On the other hand, no effects were observed on the investigated parameters in experiments involving ABA applied in vitro to isolated chloroplasts. It is hypothesized that ABA disrupts the granal chloroplasts structure and raises the degree of participation of the cooperative mechanism of O2-evolution connected with the functioning of PS II centers in the stroma situated thylakoids.Abbreviations DCPIP 2,6-Dichlorophenolindophenol - DCMU 3-(3,4-dichlorophenil)-1,1-dimethylurea - HEPES N-2-Hydroxyethylpiperazine-N-2-ethane sulfonic acid - PSII photosystem II - RubisCO Ribulose-1,5-bis-phosphate carboxylase-oxygenase  相似文献   
50.
Manganese in the oxygen-evolving complex is a physiological electron donor to Photosystem II. PS II depleted of manganese may oxidize exogenous reductants including benzidine and Mn2+. Using flash photolysis with electron spin resonance detection, we examined the room-temperature reaction kinetics of these reductants with Yz +, the tyrosine radical formed in PS II membranes under illumination. Kinetics were measured with membranes that did or did not contain the 33 kDa extrinsic polypeptide of PS II, whose presence had no effect on the reaction kinetics with either reductant. The rate of Yz + reduction by benzidine was a linear function of benzidine concentration. The rate of Yz + reduction by Mn2+ at pH 6 increased linearly at low Mn2+ concentrations and reached a maximum at the Mn2+ concentrations equal to several times the reaction center concentration. The rate was inhibited by K+, Ca2+ and Mg2+. These data are described by a model in which negative charge on the membrane causes a local increase in the cation concentration. The rate of Yz + reduction at pH 7.5 was biphasic with a fast 400 s phase that suggests binding of Mn2+ near Yz + at a site that may be one of the native manganese binding sites.Abbreviations PS II Photosystem II - YD tyrosine residue in Photosystem II that gives rise to the stable Signal II EPR spectrum - Yz tyrosine residue in Photosystem II that mediates electron transfer between the reaction center chlorophyll and the site of water oxidation - ESR electron spin resonance - DPC diphenylcarbazide - DCIP dichlorophenolindophenol  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号