首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12044篇
  免费   946篇
  国内免费   850篇
  2024年   35篇
  2023年   137篇
  2022年   169篇
  2021年   236篇
  2020年   358篇
  2019年   445篇
  2018年   457篇
  2017年   359篇
  2016年   341篇
  2015年   416篇
  2014年   677篇
  2013年   1059篇
  2012年   405篇
  2011年   685篇
  2010年   408篇
  2009年   604篇
  2008年   605篇
  2007年   684篇
  2006年   588篇
  2005年   562篇
  2004年   439篇
  2003年   458篇
  2002年   379篇
  2001年   280篇
  2000年   254篇
  1999年   198篇
  1998年   230篇
  1997年   218篇
  1996年   186篇
  1995年   206篇
  1994年   184篇
  1993年   200篇
  1992年   178篇
  1991年   139篇
  1990年   118篇
  1989年   141篇
  1988年   110篇
  1987年   105篇
  1986年   75篇
  1985年   104篇
  1984年   87篇
  1983年   50篇
  1982年   64篇
  1981年   60篇
  1980年   31篇
  1979年   29篇
  1978年   27篇
  1977年   17篇
  1976年   14篇
  1973年   11篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
61.
电刺激麻醉兔延髓腹侧化学敏感区头端区引起潮气量(V_T)增加,呼吸频率(f)增快;电刺激压力敏感区(中间区)则使V_T减小,f亦增快。弱刺激时,两者均产生降压反应;刺激增强可诱发双相或升压反应。在出现周期性呼吸时,电刺激化学敏感区可使呼吸节律正常化、V_T增大,而电刺激压力敏感区则导致呼吸暂停。电刺激压力敏感区时,吸气时间(TI)和呼气时间(T_E)均缩短,以T_E变化更明显;由于V_T减小和T_I缩短,V_T/T_I保持相对不变,提示吸气终止的中枢阈值降低。在准备刺激的相应局部预先应用阿托品,可使电刺激化学敏感区产生的通气增强效应翻转,而对电刺激压力敏感区引起的通气抑制无明显影响;用印防己毒素则可选择性消除电刺激压力敏感区的通气抑制和降压效应。本工作表明延髓腹侧存在两个不同的中枢机制,其中化学敏感区产生的通气增强与胆碱能系统有关;压力敏感区产生的通气减弱效应与GABA系统有关。  相似文献   
62.
A role for haemoglobin in all plant roots?   总被引:4,自引:2,他引:2  
Abstract. We have found haemoglobin in plant roots whereas previously it has been recorded only in nitrogen fixing nodules of plants. Haemoglobin occurs not only in the roots of those plants that are capable of nodulation but also in the roots of species that are not known to nodulate. We suggest that a haemoglobin gene may be a component of the genome of all plants. The gene structure and sequence in two unrelated families of plants suggests that the plant haemoglobins have had a single origin and that this origin relates to the haemoglobin gene of the animal kingdom. At present we cannot completely rule out the possibility of a horizontal transfer of the gene from the animal kingdom to a progenitor of the dicotyledonous angiosperms but we favour a single origin of the gene from a progenitor organism to both the plant and animal kingdoms. We speculate about the possible functions of haemoglobin in plant roots and put the case that it is unlikely to have a function in facilitating oxygen diffusion. We suggest that haemoglobin may act as a signal molecule indicating oxygen deficit and the consequent need to shift plant metabolism from an oxidative to a fermentative pathway of energy generation.  相似文献   
63.
Heat inactivation of photosynthetic O2 evolution was studied in isolated thylakoids from spinach (Spinacia oleracea) and mangrove (Avicennia marina) leaves. Different temperatures, salt, pH and uncoupler effects were investigated. From these results and others in the literature it was concluced that chloride loss from the membrane and, more specifically, the oxygen-evolving complex of photosystem II, may be the cause of inhibition of oxygen evolution during heat inactivation.Abbreviations Hepes 4-(2-hydroxyethyl)-1-piperazinethanesulfonic acid - Tris 2-amino-2-(hydroxymethyl)-1,3-propanediol - Tricine N-2-hydroxy-1, 1-bis (hydroxymethyl) ethyl glycine - EDTA ethylenediaminetetraacetic acid - FeCN K-ferricyanide  相似文献   
64.
Incubation of potato tuber tissue discs on B5 medium supplemented with 1-naphtyl-acetic acid (NAA) led to callus formation, irrespective of the presence of kinetin; without NAA no callus formation occurred. Incubation in the presence of abscisic acid (ABA) reduced the increases in fresh weight and dry weight both in callus-forming and in non-callus-forming tissue. Mitochondrial respiration was lowered by ABA as well. The induction of the alternative, CN-resistant pathway was inhibited by the presence of ABA, especially in mitochondria from non-callus-forming tissue.The in vivo respiration of the callus-forming tissue was higher than that of the non-callus-forming tissue. Total respiration, cytochrome pathway activity and the capacity of the alternative pathway were all lowered in callus-forming tissue by treatment with ABA. The in vivo activity of the alternative pathway was low in all tissue types, especially after ABA-treatment. The slight stimulation by hydroxamates of the oxygen uptake of callus-forming tissue incubated on medium with NAA and ABA indicates the involvement of a hydroxamate-activated peroxidase in the oxygen uptake of this tissue; this peroxidase seemed not to participate in the oxygen uptake of the other tissues types.In non-callus-forming tissue the oxygen uptake of ABA-treated tissue was very low and almost completely resistant to the combined addition of inhibitors of both the cytochrome and the alternative pathway, indicating that the in vivo activity of the mitochondria in the oxygen uptake of the tissue was very low. The possible causes for this ABA-effect are discussed. In non-callus-forming tissue the treatment with ABA creates a situation which is comparable with that observed in intact potato tubers. This situation is characterized by a tissue respiration lower than that of the isolated mitochondria and an alternative pathway capacity that is low or absent.  相似文献   
65.
Respiration and soluble sugar metabolism in sugar pine embryos   总被引:1,自引:0,他引:1  
Embroys excised from dormant seeds of sugar pine ( Pinus lambertiana Dougl.) incubated at 25°C (non-dormancy-breaking) or stratified at 5°C (dormancy-breaking) were analyzed to determine temperature effects on the relative activities of respiration and fermentative metabolism, the levels of soluble sugers and the activities of the hydrolytic enzymes, invertase and sucrose synthase, as related to the release of dormancy and germinatio. At 25°C, despite a sharp drop in embryo oxygen uptake after 48 h, a simultaneous decline in acetaldehyde and ethanol concentrations indicated that there was not a shift to fermentative metabolism. The concentrations of soluble sugars showed no treatment effects. Embryo invertase (EC 3.2.1.26) activity changed only slightly at either temperature, while stratification was accompanied by a 4-fold increase in sucrose synthase (EC 2.4.1.13) activity (cleavage direction). Upon transfer of stratified seeds to 25°C, embryo sucrose synthase activity rapidly increased almost 10-fold, with the increase beginning prior to germination, while mvertase activity increased 20-fold, concomitant with germination.  相似文献   
66.
High temperature (45°C) inhibits seed germinition and seedling sunflower ( Helianthus annuus L. cv. Mirasol). Treatment of imbibed seeds at 45°C for more than 48 h induces a secondary dormancy, which is associated with progressive decrease of germination ability at optimal temperature (25°C) as well as with abnormal seedling growth. Ethylene (55μl l−1) and 2-chloroethylphosphonic acid (ethephon) (2.5 m M ) improve germination of thermodormant seeds at 25°C. but the abnormal growth of the seedlings remains. O2-enriched atmosphere and dry storage improve germination and normal seedling growth. The induction of thermodormancy in sunflower seeds seems associated with loss of their ability to convert 1-aminocyclopropane-1-carboxylic acid (ACC) to ethylene. Possible effects of high temperature on membranes and ethylene forming enzyme (EFE) are discussed.  相似文献   
67.
The low gas permeability of a diffusion barrier in the cortex of soybean nodules plays a significant role in the protection of nitrogenase from oxygen inactivation. It may also set an upper limit on nodule respiration and nitrogen fixation rates. Two methods which have been used to quantify the gas permeability of leguminous nodules are reviewed and found to be unreliable. A new assay technique for determining both the nodule activity and gas permeability is developed and tested. This ‘lag-phase’ assay is based on the time nodules require to reach steady-state ethylene production after being exposed to acetylene. The technique is rapid, insensitive to errors in biochemical parameters associated with nitrogenase, and is non-destructive. The method was tested with intact aeroponically grown soybean plants for which the mean nodule gas permeability was found to be 13.3×10−3 mms−1. This corresponds to a layer of cells approximately 35 um thick and is consistent with previously reported values.  相似文献   
68.
While diurnal cycles in nitrogen fixation rates are sometimes assumed to result from diurnal variation in photosynthetically active radiation, contradicting evidence exists that indicate soil temperature is the primary environmental influence. These studies assessed the significance of temperature on soybean nitrogen fixation under field conditions. Two groups of intact field-grown soybean plants, one at ambient and the other exposed to a 10°C diurnal variation in soil temperature, were nondestructively assayed for acetylene reduction rates. Activity was closely associated with soil temperature (R2=0.85), even when temperature was 12 h out of phase with ambient. Data were also obtained to determine if the effects of rhizosphere temperature on nitrogen fixation are mediated through an effect on the nodule oxygen permeability. Nodule oxygen permeability of intact, aeroponically grown soybean was closely correlated with the diurnal changes in temperature (R2=0.90).  相似文献   
69.
70.
The motility status of Xenopus laevis spermatozoa does not affect their respiration rate. Oxygen consumption for 109 spermatozoa is approximately 0.4 μmol/minute. Oxygen consumption is not increased by gramicidin D, an uncoupler, and it is not blocked by KCN or NaN3. The adenosine triphosphate (ATP) content of spermatozoa that have been activated is definitely less than that in the spermatozoa that remained immotile. Incubation in KCN, NaN3, and gramicidin decreases the ATP content and impairs motility. The conclusions of the present study are that in Xenopus spermatozoa motility and oxygen consumption are not correlated, and the composition of the respiratory chain of these spermatozoa presents noteworthy peculiarities.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号