全文获取类型
收费全文 | 799篇 |
免费 | 20篇 |
国内免费 | 19篇 |
专业分类
838篇 |
出版年
2023年 | 11篇 |
2022年 | 11篇 |
2021年 | 11篇 |
2020年 | 12篇 |
2019年 | 31篇 |
2018年 | 32篇 |
2017年 | 14篇 |
2016年 | 11篇 |
2015年 | 6篇 |
2014年 | 46篇 |
2013年 | 67篇 |
2012年 | 19篇 |
2011年 | 55篇 |
2010年 | 36篇 |
2009年 | 41篇 |
2008年 | 39篇 |
2007年 | 45篇 |
2006年 | 35篇 |
2005年 | 43篇 |
2004年 | 23篇 |
2003年 | 23篇 |
2002年 | 11篇 |
2001年 | 13篇 |
2000年 | 9篇 |
1999年 | 7篇 |
1998年 | 6篇 |
1997年 | 15篇 |
1996年 | 3篇 |
1995年 | 17篇 |
1994年 | 5篇 |
1993年 | 9篇 |
1992年 | 5篇 |
1991年 | 4篇 |
1990年 | 3篇 |
1989年 | 4篇 |
1988年 | 5篇 |
1987年 | 4篇 |
1985年 | 7篇 |
1984年 | 16篇 |
1983年 | 9篇 |
1982年 | 9篇 |
1981年 | 9篇 |
1980年 | 10篇 |
1979年 | 4篇 |
1978年 | 14篇 |
1977年 | 4篇 |
1976年 | 5篇 |
1975年 | 8篇 |
1974年 | 5篇 |
1973年 | 3篇 |
排序方式: 共有838条查询结果,搜索用时 15 毫秒
81.
The receptor components of the chloroplast protein import machinery, Toc34 and Toc159, are both encoded by small gene families in Arabidopsis thaliana. Recent results suggest that each member of these families preferentially interacts with different groups of precursor proteins. Here we address the question, whether multiple homologous Toc receptors are unique to Arabidopsis or whether they are a general phenomenon in plants. Indeed, in spinach we could identify at least two Toc34 proteins with different substrate specificities as demonstrated by competition and antibody inhibition experiments. In addition, an analysis of the available genomic data revealed the presence of at least two Toc34 homologs in six other plant species. 相似文献
82.
目的:构建携带过表达大鼠凝集素样氧化低密度脂蛋白受体-1(LOX-1)基因的慢病毒载体,研究LOX-1与心肌细胞肥大的关系。方法:构建大鼠LOX-1基因pHIV-LOX-1过表达质粒,与包装质粒psPAX2、pMD2G共转染293T细胞,检测其侵染效率。包装慢病毒并侵染H9C2心肌细胞,72 h后观察其侵染效率。qPCR法检测细胞LOX-1表达。检测过表达LOX-1后心肌细胞面积及其蛋白含量变化。结果:成功构建过表达LOX-1 H9C2心肌细胞。过表达LOX-1组(Lv.LOX-1+)心肌细胞面积(16691.890±1022.368μm2)较对照组(Lv.NC)(3459.865±343.175μm2)显著增加(P0.001)。Lv.LOX-1+组心肌细胞蛋白含量(132.457±8.188 pg/cell)较Lv.NC组(45.095±1.655 pg/cell)显著增加(P0.001)。结论:LOX-1过表达能诱导H9C2心肌细胞肥大。 相似文献
83.
The species-specific properties of LDH isozymes are essentially determined by M (muscle) and H (heart) subunit proteins encoded by the LDHA and LDHB genes, respectively. In the present study, we molecularly characterized the full-length equine lactate dehydrogenase A (eLDHA) and B (eLDHB) cDNAs. The eLDHA cDNA consisted of a 999-bp open reading frame (ORF), while the eLDHB and newly acquired bat LDHB consisted of a 1002-bp ORF, which is 3 bp shorter than the LDHB ORF of other registered mammals. The alignment of amino acid sequences showed that eLDHA acquired positively charged His 88 and 226, and eLDHB lost negatively charged Glu 14, as compared to the highly conserved residues at these positions in the corresponding amino acid sequences of other mammals. These alterations were identified in six equine species by genomic DNA analysis. A comparison of the equine and human 3D structures revealed that the substituted His 88 and 226 of the eLDHA monomer and the deleted Glu 14 of the eLDHB monomer altered the surface charge of equine LDH tetramers and that these three residues were located in important regions affecting the catalytic kinetics. Also, RT-PCR amplification of the three myosin heavy chain isoforms corroborated that the cervical muscle as postural muscle of the thoroughbred horse was composed of more oxidative myofibers than the dynamic muscle. Based on this property, the mRNA expression patterns of eLDHA, eLDHB, and eGAPDH in various tissues were analyzed by using real-time PCR. The expression levels of these three genes in the cervical muscle were not always relatively higher than in the brain or heart. 相似文献
84.
Booz GW 《Free radical biology & medicine》2011,51(5):1054-1061
Oxidative stress with reactive oxygen species generation is a key weapon in the arsenal of the immune system for fighting invading pathogens and initiating tissue repair. If excessive or unresolved, however, immune-related oxidative stress can initiate further increasing levels of oxidative stress that cause organ damage and dysfunction. Targeting oxidative stress in various diseases therapeutically has proven more problematic than first anticipated given the complexities and perversity of both the underlying disease and the immune response. However, growing evidence suggests that the endocannabinoid system, which includes the CB1 and CB2 G-protein-coupled receptors and their endogenous lipid ligands, may be an area that is ripe for therapeutic exploitation. In this context, the related nonpsychotropic cannabinoid cannabidiol, which may interact with the endocannabinoid system but has actions that are distinct, offers promise as a prototype for anti-inflammatory drug development. This review discusses recent studies suggesting that cannabidiol may have utility in treating a number of human diseases and disorders now known to involve activation of the immune system and associated oxidative stress, as a contributor to their etiology and progression. These include rheumatoid arthritis, types 1 and 2 diabetes, atherosclerosis, Alzheimer disease, hypertension, the metabolic syndrome, ischemia-reperfusion injury, depression, and neuropathic pain. 相似文献
85.
Hyun-Hee Jang Arvind P. Jamakhandi Shane Z. Sullivan Chul-Ho Yun Paul F. Hollenberg Grover P. Miller 《Biochimica et Biophysica Acta - Proteins and Proteomics》2010,1804(6):1285-1293
As a promiscuous redox partner, the biological role of cytochrome P450 reductase (CPR) depends significantly on protein–protein interactions. We tested a hypothesized CPR docking site by mutating D113, E115, and E116 to alanine and assaying activity toward various electron acceptors as a function of ionic strength. Steady-state cytochrome c studies demonstrated the mutations improved catalytic efficiency and decreased the impact of ionic strength on catalytic parameters when compared to wild type. Based on activity toward 7-ethoxy-4-trifluoro-methylcoumarin, CYP2B1 and CPR favored formation of an active CYP2B1•CPR complex and inactive (CYP2B1)2•CPR complex until higher ionic strength whereby only the binary complex was observed. The mutations increased dissociation constants only for the binary complex and suppressed the ionic strength effect. Studies with a non-binding substrate, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) suggest changes in activity toward cytochrome c and CYP2B1 reflect alterations in the route of electron transfer caused by the mutations. Electrostatic modeling of catalytic and binding parameters confirmed the importance of D113 and especially the double mutant E115 and E116 as mediators in forming charge–charge interactions between CPR and complex partners. 相似文献
86.
Blas Moreno-Beltrán Antonio Díaz-Quintana Katiuska González-Arzola Adrián Velázquez-Campoy Miguel A. De la Rosa Irene Díaz-Moreno 《BBA》2014
In plants, channeling of cytochrome c molecules between complexes III and IV has been purported to shuttle electrons within the supercomplexes instead of carrying electrons by random diffusion across the intermembrane bulk phase. However, the mode plant cytochrome c behaves inside a supercomplex such as the respirasome, formed by complexes I, III and IV, remains obscure from a structural point of view. Here, we report ab-initio Brownian dynamics calculations and nuclear magnetic resonance-driven docking computations showing two binding sites for plant cytochrome c at the head soluble domain of plant cytochrome c1, namely a non-productive (or distal) site with a long heme-to-heme distance and a functional (or proximal) site with the two heme groups close enough as to allow electron transfer. As inferred from isothermal titration calorimetry experiments, the two binding sites exhibit different equilibrium dissociation constants, for both reduced and oxidized species, that are all within the micromolar range, thus revealing the transient nature of such a respiratory complex. Although the docking of cytochrome c at the distal site occurs at the interface between cytochrome c1 and the Rieske subunit, it is fully compatible with the complex III structure. In our model, the extra distal site in complex III could indeed facilitate the functional cytochrome c channeling towards complex IV by building a “floating boat bridge” of cytochrome c molecules (between complexes III and IV) in plant respirasome. 相似文献
87.
《Harmful algae》2019
Cyanobacterial blooms occur when algal densities exceed baseline population concentrations. Cyanobacteria can produce a large number of secondary metabolites. Odorous metabolites affect the smell and flavor of aquatic animals, whereas bioactive metabolites cause a range of lethal and sub-lethal effects in plants, invertebrates, and vertebrates, including humans. Herein, the bioactivity, chemistry, origin, and biosynthesis of these cyanobacterial secondary metabolites were reviewed. With recent revision of cyanobacterial taxonomy by Anagnostidis and Komárek as part of the Süβwasserflora von Mitteleuropa volumes 19(1–3), names of many cyanobacteria that produce bioactive compounds have changed, thereby confusing readers. The original and new nomenclature are included in this review to clarify the origins of cyanobacterial bioactive compounds.Due to structural similarity, the 157 known bioactive classes produced by cyanobacteria have been condensed to 55 classes. This review will provide a basis for more formal procedures to adopt a logical naming system. This review is needed for efficient management of water resources to understand, identify, and manage cyanobacterial harmful algal bloom impacts. 相似文献
88.
Pyruvate:ferredoxin oxidoreductase was purified to electrophoretic homogeneity from an aerobic, thermophilic, obligately
chemolithoautotrophic, hydrogen-oxidizing bacterium, Hydrogenobacter thermophilus TK-6, by precipitation with ammonium sulfate and fractionation by DEAE-Sepharose CL-6B, polyacrylate-quaternary amine, hydroxyapatite,
and Superdex-200 chromatography. The native enzyme had a molecular mass of 135 kDa and was composed of four different subunits
with apparent molecular masses of 46, 31.5, 29, and 24.5 kDa, respectively, indicating that the enzyme has an αβγδ-structure.
The activity was detected with pyruvate, coenzyme A, and one of the following electron acceptors in substrate amounts: ferredoxin
isolated from H. thermophilus, FAD, FMN, triphenyltetrazolium chloride, or methyl viologen. NAD, NADP, and ferredoxins from Chlorella spp. and Clostridium pasteurianum were ineffective as the electron acceptor. The temperature optimum for pyruvate oxidation was approximately 80° C. The pH
optimum was 7.6–7.8. The apparent K
m values for pyruvate and coenzyme A at 70° C were 3.45 mM and 54 μM, respectively. The enzyme was extremely thermostable under
anoxic conditions; the time for a 50% loss of activity (t
50%) at 70° C was approximately 8 h.
Received: 9 September 1996 / Accepted: 27 December 1996 相似文献
89.
Leaflets of soybean plants which are moderately inorganic nitrogen (N)-limited exhibit either no difference in the rate of net photosynthesis or as much as a 15–23% lower net photosynthesis rate per unit area than leaflets of N-sufficient plants [Robinson JM (1996) Photosynth Res 50: 133–148; Robinson JM (1997a) Int J Plant Sci 158: 32–43]. However, mature leaflets of N-limited soybean plants have a higher CO2photoassimilation rate per unit chlorophyll than leaflets of N-sufficient soybean plants at both moderate light intensity (500 µmol m-2s-1) and saturating light intensity (1200 µmol m-2s-1) [Robinson JM (1996) Photosynth Res 50: 133–148]. This study was undertaken to determine whether chloroplast thylakoids isolated from the leaflets of nitrogen-limited soybean plants displayed similar or higher linear electron transport rates (H2O ferredoxin NADP) per unit chlorophyll than thylakoids isolated from leaflets of N-sufficient plants. Chlorophyll concentration in reaction mixtures containing chloroplast thylakoids prepared from leaflets of N-limited plants was manipulated so that it was similar to the chlorophyll concentration in reaction mixtures of thylakoids prepared from leaflets of N-sufficient plants. Measurements of ferredoxin dependent, NADP dependent, O2photo-evolution in thylakoid isolates were carried out in saturating light (1500 µmol m-2s-1) and with
(an uncoupler) in the chloroplast reaction mixtures. Chloroplast thylakoids isolated from N-limited soybean plant leaflets routinely had a 1.5 to 1.7 times higher rate of uncoupled, whole chain electron transport per unit chlorophyll in saturating light than did chloroplast thylakoids isolated from leaflets of N-sufficient plants. The results suggest that the photosystems and photosynthetic electron transport chain components are more active per unit Chl in leaflet chloroplast thylakoids of N-limited soybean plants than in thylakoids of N-sufficient plants. 相似文献
90.
(1) Current models for the mechanism of cyclic electron transport in Rhodopseudomonas sphaeroides and Rhodopseudomonas capsulata have been investigated by observing the kinetics of electron transport in the presence of inhibitors, or in photosynthetically incompetent mutant strains. (2) In addition to its well-characterized effect on the Rieske-type iron sulfur center, 5-(n-undecyl)-6-hydroxy-4,7-dioxobenzothiazole (UHDBT) inhibits both cytochrome b50 and cytochrome b?90 reduction induced by flash excitation in Rps. sphaeroides and Rps. capsulata. The concentration dependency of the inhibition in the presence of antimycin (approx. 2.7 mol UHDBT/mol reaction center for 50% inhibition of extent) is very similar to that of its inhibition of the antimycin-insensitive phase of ferricytochrome c re-reduction. UHDBT did not inhibit electron transfer between the reduced primary acceptor ubiquinone (Q?I) and the secondary acceptor ubiquinone (QII) of the reaction center acceptor complex. A mutant of Rps. capsulata, strain R126, lacked both the UHDBT and antimycin-sensitive phases of cytochrome c re-reduction, and ferricytochrome b50 reduction on flash excitation. (3) In the presence of antimycin, the initial rate of cytochrome b50 reduction increased about 10-fold as the Eh(7.0) was lowered below 180 mV. A plot of the rate at the fastest point in each trace against redox potential resembles the Nernst plot for a two-electron carrier with Em(7.0) ≈ 125 ± 15 mV. Following flash excitation there was a lag of 100–500 μs before cytochrome b50 reduction began. However, there was a considerably longer lag before significant reduction of cytochrome c by the antimycin-sensitive pathway occurred. (4) The herbicide ametryne inhibited electron transfer between Q?I and QII. It was an effective inhibitor of cytochrome b50 photoreduction at Eh(7.0) 390 mV, but not at Eh(7.0) 100 mV. At the latter Eh, low concentrations of ametryne inhibited turnover after one flash in only half of the photochemical reaction centers. By analogy with the response to o-phenanthroline, it is suggested that ametryne is ineffective at inhibiting electron transfer from Q?I to the secondary acceptor ubiquinone when the latter is reduced to the semiquinone form before excitation. (5) At Eh(7.0) > 200 mV, antimycin had a marked effect on the cytochrome b50 reduction-oxidation kinetics but not on the cytochrome c and reaction center changes or the slow phase III of the electrochromic carotenoid change on a 10-ms time scale. This observation appears to rule out a mechanism in which cytochrome b50 oxidation is obligatorily and kinetically linked to the antimycin-sensitive phase of cytochrome c reduction in a reaction involving transmembrane charge transfer at high Eh values. However, at lower redox potentials, cytochrome b50 oxidation is more rapid, and may be linked to the antimycin-sensitive reduction of cytochrome c. (6) It is concluded that neither a simple linear scheme nor a simple Q-cycle model can account adequately for all the observations. Future models will have to take account of a possible heterogeneity of redox chains resulting from the two-electron gate at the level of the secondary quinone, and of the involvement of cytochrome b?90 in the rapid reactions of the cyclic electron transfer chain 相似文献