首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   540篇
  免费   11篇
  国内免费   17篇
  568篇
  2023年   7篇
  2022年   6篇
  2021年   10篇
  2020年   8篇
  2019年   25篇
  2018年   25篇
  2017年   12篇
  2016年   10篇
  2015年   6篇
  2014年   35篇
  2013年   59篇
  2012年   18篇
  2011年   49篇
  2010年   27篇
  2009年   30篇
  2008年   26篇
  2007年   33篇
  2006年   23篇
  2005年   27篇
  2004年   8篇
  2003年   16篇
  2002年   5篇
  2001年   3篇
  2000年   2篇
  1999年   5篇
  1998年   3篇
  1997年   5篇
  1996年   1篇
  1995年   3篇
  1994年   3篇
  1993年   2篇
  1992年   3篇
  1991年   2篇
  1989年   1篇
  1988年   1篇
  1987年   1篇
  1985年   3篇
  1984年   9篇
  1983年   6篇
  1982年   3篇
  1981年   7篇
  1980年   8篇
  1979年   3篇
  1978年   7篇
  1977年   4篇
  1976年   5篇
  1975年   5篇
  1974年   4篇
  1973年   2篇
  1971年   2篇
排序方式: 共有568条查询结果,搜索用时 15 毫秒
561.
BackgroundProteins have tendency to form inactive aggregates at higher temperatures due to thermal instability. Maintenance of thermal stability is essential to gain the protein in sufficient quantity and biologically active form during their commercial production.MethodsBL21-DE3 Rosetta E. coli cells which contains plasmid pET43.1a vector was used for producing zDHFR protein commercially. The purification of N-terminal Histidine tagged zDHFR was performed by Immobilized Metal Ion chromatography (IMAC). Investigations were performed in existence and non existence of Silver nanoparticles (AgNPs). The inactivation kinetics of zDHFR in existence and non existence of AgNPs were monitored over a range of 40–80 °C as monitored by UV–Visible absorption spectroscopy.ResultsThe protein completely lost its activity at 55 °C. Kinetics of inactivated zDHFR follows first order model in presence and absence of AgNPs. Decrease in rate constant (k) values at respective temperatures depicts that AgNPs contribute in the thermostability of the protein. AgNPs also assists in regaining the activity of zDHFR protein.ConclusionsAgNPs helps in maintaining thermostability and reducing the aggregation propensity of zDHFR protein.General significanceResult explains that AgNPs are recommended as a valuable system in enhancing the industrial production of biologically active zDHFR protein which is an important component in folate cycle and essential for survival of cells and prevents the protein from being aggregated.  相似文献   
562.
563.
Type 2 diabetes mellitus (T2DM) increases the risk of cognitive decline and dementia. Disruptions in the cytochrome P450-soluble epoxide hydrolase (CYP450-sEH) pathway have been reported in T2DM, obesity and cognitive impairment. We examine linoleic acid (LA)-derived CYP450-sEH oxylipins and cognition in T2DM and explore potential differences between obese and nonobese individuals. The study included 51 obese and 57 nonobese participants (mean age 63.0 ± 9.9, 49% women) with T2DM. Executive function was assessed using the Stroop Color-Word Interference Test, FAS-Verbal Fluency Test, Digit Symbol Substitution Test, and Trails Making Test-Part B. Verbal memory was assessed using the California Verbal Learning Test, second Edition. Four LA-derived oxylipins were analyzed by ultra-high-pressure–LC/MS, and the 12,13-dihydroxyoctadecamonoenoic acid (12,13-DiHOME) considered the main species of interest. Models controlled for age, sex, BMI, glycosylated hemoglobin A1c, diabetes duration, depression, hypertension, and education. The sEH-derived 12,13-DiHOME was associated with poorer executive function scores (F1,98 = 7.513, P = 0.007). The CYP450-derived 12(13)-epoxyoctadecamonoenoic acid (12(13)-EpOME) was associated with poorer executive function and verbal memory scores (F1,98 = 7.222, P = 0.008 and F1,98 = 4.621, P = 0.034, respectively). There were interactions between obesity and the 12,13-DiHOME/12(13)-EpOME ratio (F1,97 = 5.498, P = 0.021) and between obesity and 9(10)-epoxyoctadecamonoenoic acid (9(10)-EpOME) concentrations (F1,97 = 4.126, P = 0.045), predicting executive function such that relationships were stronger in obese individuals. These findings suggest that the CYP450-sEH pathway as a potential therapeutic target for cognitive decline in T2DM. For some markers, relationships may be obesity dependent.  相似文献   
564.
Ascorbate reacts with methemoglobin to produce reactive oxygen species, most probably hydroxyl radicals. The main features of this system are: a) disappearance of ascorbate; b) consumption of oxygen with an ascorbate/O2 stoichiometry of 2:1; c) requirement of unliganded heme iron; d) formation of H2O2. The proposed mechanism involves an ascorbate-mediated interconversion of methemoglobin and oxy-hemoglobin, resulting in the production of H2O2. This product is decomposed by hemoglobin to produce hydroxyl radicals according to a Fenton-like reaction in which ascorbate recycles methemoglobin to hemoglobin. Alternative pathways of formation and of decomposition of H2O2 in this system appear to play a minor role.  相似文献   
565.
George C. Papageorgiou 《BBA》1977,461(3):379-391
On treating the blue-green alga Anacystis nidulans with dimethylsuberimidate up to 70% of the free NH2 of the photosynthetic membrane is amidinated, and presumably inter- and intramolecular cross-links are established in the membrane proteins. Amidination destroys the ability of A. nidulans to photoreduce HCO3? but leaves the photochemical activities of Photosystems II and I nearly intact. With added electron acceptors, photosynthetic O2 evolution can be demonstrated both with permeable cells (permeaplasts) prepared by digestion of the cell wall of dimethylsuberimidate-reacted A. nidulans with lysozyme, as well as with heavy membrane particles (36 000 × g) prepared from dimethylsuberimidate-reacted cells.Permeaplasts prepared from dimethylsuberimidate-reacted cells resist damage in hypoosmotic medium, whereas those prepared from unreacted cells are induced to release C-phycocyanin. On the other hand, the former are inactivated more easily by heat stress than the latter. On this basis, it is concluded that cross-linking with dimethylsuberimidate confers functional instability to photosynthetic membranes.  相似文献   
566.
The Rieske iron-sulfur center in the photosynthetic bacterium Rhodopseudomonas sphaeroides appears to be the direct electron donor to ferricytochrome c2, reducing the cytochrome on a submillisecond timescale which is slower than the rapid phase of cytochrome oxidation (t12 3–5 μs). The reduction of the ferricytochrome by the Rieske center is inhibited by 5-n-undecyl-6-hydroxy-4,7-dioxobenzothiazole (UHDBT) but not by antimycin. The slower (1–2 ms) antimycin-sensitive phase of ferricytochrome c2 reduction, attributed to a specific ubiquinone-10 molecule (Qz), and the associated carotenoid spectral response to membrane potential formation are also inhibited by UHDBT. Since the light-induced oxidation of the Rieske center is only observed in the presence of antimycin, it seems likely that the reduced form of Qz (QzH2) reduces the Rieske center in an antimycin-sensitive reaction. From the extent of the UHDBT-sensitive ferricytochrome c2 reduction we estimate that there are 0.7 Rieske iron-sulfur centers per reaction center.UHDBT shifts the EPR derivative absorption spectrum of the Rieske center from gy 1.90 to gy 1.89, and shifts the Em,7 from 280 to 350 mV. While this latter shift may account for the subsequent failure of the iron-sulfur center to reduce ferricytochrome c2, it is not clear how this can explain the other effects of the inhibitor, such as the prevention of cytochrome b reduction and the elimination of the uptake of H+II; these may reflect additional sites of action of the inhibitor.  相似文献   
567.
  1. Download : Download high-res image (329KB)
  2. Download : Download full-size image
  相似文献   
568.
The fully developed lesion of Alzheimer's disease is a dense plaque composed of fibrillar amyloid β-proteins (Aβ) with a characteristic and well-ordered β-sheet secondary structure. Because the incipient lesion most likely develops when these proteins are first induced to form β-sheet structure, it is important to understand factors that induced Aβ to adopt this conformation. In this review, we describe the application of polarized attenuated total internal reflection infrared FT-IR spectroscopy for characterizing the conformation, orientation, and rate of accumulation of Aβ on lipid membranes. We also describe the application and yield of linked analysis, whereby multiple spectra are fit simultaneously with component bands that are constrained to share common fitting parameters. Results have shown that membranes promote β-sheet formation under a variety of circumstances that may be significant to the pathogenesis of Alzheimer's disease.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号