首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1235篇
  免费   82篇
  国内免费   87篇
  1404篇
  2024年   4篇
  2023年   34篇
  2022年   27篇
  2021年   40篇
  2020年   39篇
  2019年   49篇
  2018年   36篇
  2017年   41篇
  2016年   39篇
  2015年   26篇
  2014年   53篇
  2013年   66篇
  2012年   41篇
  2011年   64篇
  2010年   34篇
  2009年   58篇
  2008年   67篇
  2007年   55篇
  2006年   52篇
  2005年   45篇
  2004年   57篇
  2003年   46篇
  2002年   39篇
  2001年   36篇
  2000年   33篇
  1999年   25篇
  1998年   26篇
  1997年   33篇
  1996年   28篇
  1995年   9篇
  1994年   21篇
  1993年   18篇
  1992年   13篇
  1991年   14篇
  1990年   19篇
  1989年   17篇
  1988年   12篇
  1987年   11篇
  1986年   13篇
  1985年   16篇
  1984年   7篇
  1983年   15篇
  1982年   7篇
  1981年   8篇
  1980年   3篇
  1979年   1篇
  1978年   3篇
  1976年   1篇
  1975年   2篇
  1971年   1篇
排序方式: 共有1404条查询结果,搜索用时 15 毫秒
71.
In a multicellular system, cellular communication is a must for orchestration and coordination of cellular events. Advent of the latest analytical and imaging tools has allowed us to enhance our understanding of the intercellular communication. An intercellular exchange of proteins or intact membrane patches is a ubiquitous phenomenon, and has been the subject of renewed interest, particularly in the context of immune cells. Recent evidence implicates that intercellular protein transfers, including trogocytosis is an important mechanism of the immune system to modulate immune responses and transferred proteins can also contribute to pathology. It has been demonstrated that intercellular protein transfer can be through the internalization/pathway, dissociation-associated pathway, uptake of exosomes and membrane nanotube formations. Exchange of membrane molecules/antigens between immune cells has been observed for a long time, but the mechanisms and functional consequences of these transfers remain unclear. In this review, we will discuss the important findings concerning intercellular protein transfers, possible mechanisms and highlight their physiological relevance to the immune system, with special reference to T cells such as the stimulatory or suppressive immune responses derived from T cells with acquired dendritic cell membrane molecules.  相似文献   
72.
Excised ligulae of Glossophora kunthii (C. Ag.) J. Ag. were cultured in photoperiods of 4–24 h and photon fluence rates of 10–75 μmol.m?2.s?1. Daylength interacted with irradiance on the growth of the ligulae. Maximal growth of primary ligulae occurred in long-day regimens with high irradiances suggesting an effect of irradiance on photosynthesis and growth. In contrast, growth of secondary ligulae was greatest in short-day regimes. Differences were significant at the highest irradiance tested. Differentiation of tetrasporangia on the ligulae is a short-day photoperiodic response. Daylengths of 8.5 h or less induced a sharp increase in numbers of fertile ligulae and tetrasporangia attaining maturity. Interruptions of the dark period decreased the development of tetrasporangia; the number of interruptions had a cumulative inhibitory effect. Differentiation of reproductive structures was influenced by interactions of photoperiod and irradiance. Maximum numbers of tetrasporangia were formed at short-day regimes and low irradiances; differentiation was completely inhibited at long-day conditions and high irradiance.  相似文献   
73.
Iris pseudacorus L. has been widely used in aquatic ecosystem to remove nutrient and has achieved positive effects. However, little is known regarding the nutrient-removal performance and physiological responses of I. pseudacorus for brackish eutrophic water treatment due to high nutrients combined with certain salinity levels. In this study, I. pseudacorus-planted microcosms were established to evaluate the capacity of I. pseudacorus to remove excessive nutrients from fresh (salinity 0.05%) and brackish (salinity 0.5%) eutrophic waters. The degradation of total nitrogen and ammonia nitrogen were not affected by 0.5% salinity; 0.5% salinity promoted the degradation of nitrate nitrogen while severely inhibited the degradation of total phosphorus. Additionally, 0.5% salinity was found to induce stress responses quantified by measuring six physiological indexes. Compared to 0.05% salinity, 0.5% salinity resulted in significant decreases in the chlorophyll a, b and total chlorophyll contents of I. pseudacorus which closely related to photosynthesis (p < 0.05). Furthermore, the higher proline, malondialdehyde contents and antioxidant enzyme activities were detected in I. pseudacorus exposed to 0.5% salinity, which provided protection against reactive oxygen species. The results highlight that the cellular stress assays are efficient for monitoring the health of I. pseudacorus in salinity shock-associated constructed wetlands.  相似文献   
74.
To assess the role of the hypothalamo-hypophysial complex in the control of photoperiodically induced vernal premigratory responses in the White-crowned Sparrow, the effects of hypothalamic lesions and systemic administration of several hormones on these responses were investigated. Lesions that destroyed the posterior median eminence (PME) or the entire median eminence (ME) inhibited photoperiodically induced testicular growth, premigratory fattening and Zugunruhe. Lesions in the basal infundibular nucleus (IN) that resulted in complete inhibition of testicular growth abolished Zugunruhe, but allowed varying degrees of fattening. The systemic administration of prolactin, testosterone propionate (TP) or the combination thereof in the PME-lesioned birds induced fattening similar to that observed in photostimulated controls but did not induce Zugunruhe. It is concluded that testosterone and prolactin are the most important hormones involved in the control of vernal premigratory fattening. The role of these hormones in the induction of vernal Zugunruhe is not positively proven.  相似文献   
75.
Herbivory‐induced changes in photosynthesis have been documented in many plant species; however, the complexity of photosynthetic regulation and analysis has thwarted progress in understanding the mechanism involved, particularly those elicited by herbivore‐specific elicitors. Here, we analysed the early photosynthetic gas exchange responses in Nicotiana attenuata plants after wounding and elicitation with Manduca sexta oral secretions and the pathways regulating these responses. Elicitation with M. sexta oral secretions rapidly decreased photosynthetic carbon assimilation (AC) in treated and systemic (untreated, vascularly connected) leaves, which were associated with changes in stomatal conductance, rather than with changes in Rubisco activity and 1‐5 ribulose‐1,5‐bisphosphate turnover. Phytohormone profiling and gas exchange analysis of oral secretion‐elicited transgenic plants altered in phytohormone regulation, biosynthesis and perception, combined with micrografting techniques, revealed that the local photosynthetic responses were mediated by 12‐oxo‐phytodienoic acid, while the systemic responses involved interactions among jasmonates, cytokinins and abscisic acid signalling mediated by mitogen‐activated protein kinase 4. The analysis also revealed a role for cytokinins interacting with mitogen‐activated protein kinase 4 in CO2‐mediated stomatal regulation. Hence, oral secretions, while eliciting jasmonic acid‐mediated defence responses, also elicit 12‐oxo‐phytodienoic acid‐mediated changes in stomatal conductance and AC, an observation illustrating the complexity and economy of the signalling that regulates defence and carbon assimilation pathways in response to herbivore attack.  相似文献   
76.
Inflammatory responses, characterized by the overproduction of numerous proinflammatory mediators by immune cells, is essential to protect the host against invading pathogens. Excessive production of proinflammatory cytokines is a key pathogenic factor accounting for severe tissue injury and disease progression during the infection of multiple viruses, which are therefore termed as “cytokine storm”. High mobility group box 1 (HMGB1), a ubiquitous DNA-binding protein released either over virus-infected cells or activated immune cells, may act as a proinflammatory cytokine with a robust capacity to potentiate inflammatory response and disease severity. Moreover, HMGB1 is a host factor that potentially participates in the regulation of viral replication cycles with complicated mechanisms. Currently, HMGB1 is regarded as a promising therapeutic target against virus infection. Here, we provide an overview of the updated studies on how HMGB1 is differentially manipulated by distinct viruses to regulate viral diseases.  相似文献   
77.
Synopsis Laboratory experiments were conducted to examine changes in behavior of red hake,Urophycis chuss, under decreasing concentrations of dissolved oxygen (DO). Since the ecological requirements of this species change with age, responses were measured for three different groups: (1) age 0+, = 89 mm total length (TL); (2) age 1+, = 238 mm TL; and (3) age 2–3+, = 397 mm TL. As DO decreased from 8–10 mg l-1 to < 0.5 mg l-1, changes were evident in active time, water column activity, range of horizontal movement, food searching, and agonistic behavior. Age 0+ fish were most sensitive, moving up into the water column and swimming continuously as DO levels fell below 4.2 mg l-1. Age 2–3+ fish were the least responsive, remaining on the substrate and increasing only their range of movement at concentrations below 3 mg l-1. Responses of age 1 + fish were variable, possibly reflecting a transition stage between the younger and older fish. Common to all groups was the decrease and eventual cessation of food searching.  相似文献   
78.
Plants have evolved numerous receptor-like kinases (RLKs) that modulate environmental stress responses. However, little is known regarding soybean (Glycine max) RLKs. We have previously identified that Glycine soja Ca2+/CAM-binding RLK (GsCBRLK) is involved in salt tolerance. Here, we report that soluble NSF attachment protein receptor proteins BET1s mediate subcellular localization of calmodulin-binding receptor-like cytoplasmic kinases CRCK1s to modulate salt stress responses. Direct interaction between GsCBRLK and GsBET11a was initially identified via yeast two-hybrid and bimolecular fluorescence complementation assays. Further analysis demonstrated conserved interaction between BET1s and CRCK1s. GsCBRLK interacted with all BET1 proteins in wild soybean (Glycine soja) and Arabidopsis, and GsBET11a strongly associated with GsCRCK1a–1d, but slightly with AtCRCK1. In addition, GsBET11a interacted with GsCBRLK via its C-terminal transmembrane domain (TMD), where the entire TMD, not the sequence, was critical for the interaction. Moreover, the N-terminal variable domain (VD) of GsCBRLK was responsible for interacting with GsBET11a, and the intensity of interaction between GsCBRLK/AtCRCK1 and GsBET11a was dependent on VD. Furthermore, GsBET11a was able to mediate the GsCBRLK subcellular localization via direct interaction with VD. Additionally, knockout of AtBET11 or AtBET12 individually did not alter GsCBRLK localization, while GsBET11a expression caused partial internalization of GsCBRLK from the plasma membrane (PM). We further suggest the necessity of GsCBRLK VD for its PM localization via N-terminal truncation assays. Finally, GsBET11a was shown to confer enhanced salt stress tolerance when overexpressed in Arabidopsis and soybean. These results revealed the conserved and direct interaction between BET1s and CRCK1s, and suggested their involvement in salt stress responses.  相似文献   
79.
Parasites of all kinds affect the behaviour of their hosts, often making them more susceptible to predators. The associated loss in expected future reproductive success of infected hosts will vary among individuals, with younger ones having more lose than older ones. For this reason, young hosts would benefit more by opposing the effects of parasites than old ones. In a laboratory study, the effects of the trematode Telogaster opisthorchis on the anti-predator responses of the upland bully (Gobiomorphus breviceps) and of the common river galaxias (Galaxias vulgaris) were examined in relation to fish age. In a bully population where parasites were very abundant, the magnitude of the fish's anti-predator responses decreased as the number of parasites per fish increased, and this effect was significantly more pronounced in age 2 + and, to a lesser extent, age 3 + fish than in age 1 + fish. In another bully population where parasites were 10 times less abundant, similar effects were noticeable but not significant, whereas no effects of parasites on the responses of galaxiids to predators were apparent. Differences in the abundance of parasites and in their sites of infection in fish may explain the variability among host populations or species. However, in the bully population with high parasite abundance, parasitism has age-dependent effects on responses to predators, providing some support for the prediction that young fish with high expected future reproductive success invest more energy into opposing the effects of parasites than do older fish.  相似文献   
80.
丘阳  高露双  张雪  郭静  马志远 《生态学杂志》2014,25(7):1870-1878
本文以长白山地区阔叶红松林不同演替阶段(次生杨桦林、次生针阔混交林、原始红松林)内红松种群作为研究对象,采用树轮学与相对生长式相结合,获取红松种群净初级生产力(NPP)连年生长(1921—2006年)数据以及相对增长率的年际变化数据,建立红松种群NPP与年际和季节性气候因子的关系,分析不同气候时期长白山阔叶红松林不同演替阶段内红松种群NPP年际变化特征及其对气候变化的响应差异.结果表明: 研究期间,不同演替阶段红松种群NPP与气候因子响应关系存在差异.随着温度上升,次生杨桦林红松种群NPP与上年生长季和当年生长季低温由显著负相关关系转变为显著正相关关系;次生针阔混交林红松种群NPP由与当年春季最低温度的正相关关系转变为与上年和当年生长季温度的显著正相关关系,气候因素对次生针阔混交林红松种群NPP影响的滞后效应增强;原始红松林红松种群NPP与温度的相关性减弱,与上年生长季降水量的正相关关系增强.研究区气候变化表现为低温和平均温度显著上升,而最高温度和降水没有明显变化.气候变化有利于提高演替初级阶段次生杨桦林和演替中级阶段次生针阔混交林内红松种群生产力,尤其是次生针阔混交林,而对演替顶极阶段红松种群NPP影响不明显.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号