首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10718篇
  免费   759篇
  国内免费   362篇
  11839篇
  2024年   33篇
  2023年   192篇
  2022年   247篇
  2021年   355篇
  2020年   321篇
  2019年   526篇
  2018年   440篇
  2017年   307篇
  2016年   334篇
  2015年   391篇
  2014年   427篇
  2013年   1142篇
  2012年   351篇
  2011年   329篇
  2010年   319篇
  2009年   395篇
  2008年   453篇
  2007年   421篇
  2006年   458篇
  2005年   457篇
  2004年   404篇
  2003年   399篇
  2002年   353篇
  2001年   301篇
  2000年   190篇
  1999年   209篇
  1998年   208篇
  1997年   207篇
  1996年   158篇
  1995年   164篇
  1994年   149篇
  1993年   122篇
  1992年   104篇
  1991年   102篇
  1990年   76篇
  1989年   90篇
  1988年   98篇
  1987年   63篇
  1986年   69篇
  1985年   76篇
  1984年   99篇
  1983年   82篇
  1982年   63篇
  1981年   51篇
  1980年   31篇
  1979年   36篇
  1978年   10篇
  1977年   12篇
  1976年   8篇
  1974年   2篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
101.
Ion channels are integral membrane proteins whose gating has been increasingly shown to depend on the presence of the low-abundance membrane phospholipid, phosphatidylinositol (4,5) bisphosphate. The expression and function of ion channels is tightly regulated via protein phosphorylation by specific kinases, including various PKC isoforms. Several channels have further been shown to be regulated by PKC through altered surface expression, probability of channel opening, shifts in voltage dependence of their activation, or changes in inactivation or desensitization. In this review, we survey the impact of phosphorylation of various ion channels by PKC isoforms and examine the dependence of phosphorylated ion channels on phosphatidylinositol (4,5) bisphosphate as a mechanistic endpoint to control channel gating.  相似文献   
102.
103.
Oxidative stress triggered by aluminum in plant roots   总被引:4,自引:0,他引:4  
Aluminum (Al) is a major growth-limiting factor for plants in acid soils. The primary site of Al accumulation and toxicity is the root meristem, and the inhibition of root elongation is the most sensitive response to Al. Al cannot catalyze redox reactions but triggers lipid peroxidation and reactive oxygen species (ROS) production in roots. Furthermore, Al causes respiration inhibition and ATP depletion. Comparative studies of Al toxicity in roots with that in cultured plant cells suggest that Al causes dysfunction and ROS production in mitochondria, and that ROS production, but not lipid peroxidation, seems to be a determining factor of root-elongation inhibition by Al.  相似文献   
104.
土壤水分时间稳定性研究进展   总被引:7,自引:2,他引:7  
蔺鹏飞  朱喜  何志斌  杜军  陈龙飞 《生态学报》2018,38(10):3403-3413
土壤水分是陆地生态系统中不可或缺的组成部分,在地表水文过程中起着关键作用,连接着一系列的水文、生态、气候和地质学过程,是陆地生态系统健康运行的关键。以土壤水分时间稳定性概念为主线,从时间稳定性概念、研究方法、应用和影响因素等方面,系统阐述了土壤水分时间稳定性近年来的研究进展,探讨了代表性测点的选取标准以及土壤水分时间稳定性的影响因素。结合目前的研究进展,提出了未来的研究重点:加强多因素综合作用对土壤水分时间稳定性的研究;结合"3S"技术、计算机模拟和野外实测来研究时间稳定性的尺度问题;如何高效选择代表性测点;探讨时间稳定性概念在植被恢复区和气候敏感区的研究与应用。  相似文献   
105.
106.
Cytokinesis in many eukaryotes requires an actomyosin contractile ring. Here, we show that in fission yeast the myosin-II heavy chain Myo2 initially accumulates at the division site via its COOH-terminal 134 amino acids independently of F-actin. The COOH-terminal region can access to the division site at early G2, whereas intact Myo2 does so at early mitosis. Ser1444 in the Myo2 COOH-terminal region is a phosphorylation site that is dephosphorylated during early mitosis. Myo2 S1444A prematurely accumulates at the future division site and promotes formation of an F-actin ring even during interphase. The accumulation of Myo2 requires the anillin homologue Mid1 that functions in proper ring placement. Myo2 interacts with Mid1 in cell lysates, and this interaction is inhibited by an S1444D mutation in Myo2. Our results suggest that dephosphorylation of Myo2 liberates the COOH-terminal region from an intramolecular inhibition. Subsequently, dephosphorylated Myo2 is anchored by Mid1 at the medial cortex and promotes the ring assembly in cooperation with F-actin.  相似文献   
107.
108.
To investigate the role mitochondrial membrane lipids play in the actions of CR (calorie restriction), C57BL/6 mice were assigned to four groups (control and three 40% CR groups) and the CR groups were fed diets containing soya bean oil (also in the control diet), fish oil or lard. The fatty acid composition of the major mitochondrial phospholipid classes, proton leak and H2O2 production were measured in liver mitochondria following 1 month of CR. The results indicate that mitochondrial phospholipid fatty acids reflect the PUFA (polyunsaturated fatty acid) profile of the dietary lipid sources. CR significantly decreased the capacity of ROS (reactive oxygen species) production by Complex III but did not markedly alter proton leak and ETC (electron transport chain) enzyme activities. Within the CR regimens, the CR-fish group had decreased ROS production by both Complexes I and III, and increased proton leak when compared with the other CR groups. The CR-lard group showed the lowest proton leak compared with the other CR groups. The ETC enzyme activity measurements in the CR regimens showed that Complex I activity was decreased in both the CR-fish and CR-lard groups. Moreover, the CR-fish group also had lower Complex II activity compared with the other CR groups. These results indicate that dietary lipid composition does influence liver mitochondrial phospholipid composition, ROS production, proton leak and ETC enzyme activities in CR animals.  相似文献   
109.
Alzheimer's disease is characterized by beta-amyloid (Abeta) overproduction and tau hyperphosphorylation. Recent studies have shown that synthetic Abeta promotes tau phosphorylation in vitro. However, whether endogenously overproduced Abeta promotes tau phosphorylation and the underlying mechanisms remain unknown. Here, we used mouse neuroblastoma N2a stably expressing wild-type amyloid precursor protein (APPwt) or the Swedish mutant APP (APPswe) to determine the alterations of phosphorylated tau and the related protein kinases. We found that phosphorylation of tau at paired helical filament (PHF)-1, pSer396 and pThr231 epitopes was significantly increased in cells transfected with APPwt and APPswe, which produced higher levels of Abeta than cells transfected with vector or amyloid precursor-like protein 1. The activity of glycogen synthase kinase-3 (GSK-3) was up-regulated with a concomitant reduction in the inhibitory phosphorylation of GSK-3 at its N-terminal Ser9 residue. In contrast, the activity of cyclin-dependent kinase-5 (CDK-5) and protein kinase C (PKC) was down-regulated. Inhibition of GSK-3 by LiCl, but not inhibition of CDK-5 by roscovitine, arrested Abeta secretion and tau phosphorylation. Inhibition of PKC by GF-109203X activated GSK-3, whereas activation of PKC by phorbol-12,13-dibutyrate inhibited GSK-3. These results suggest that endogenously overproduced Abeta induces increased tau phosphorylation through activation of GSK-3, and that inactivation of PKC is at least one of the mechanisms involved in GSK-3 activation.  相似文献   
110.
Protein phosphorylation is a highly conserved mechanism for regulating protein function, being found in all prokaryotes and eukaryotes examined. Phosphorylation can alter protein activity or subcellular localization, target proteins for degradation and effect dynamic changes in protein complexes. In many cases, different kinases may be involved in each of these processes for a single protein, allowing a large degree of combinatorial regulation at the post-translational level. Therefore, knowing which kinases are activated during a response and which proteins are substrates is integral to understanding the mechanistic regulation of a wide range of biological processes. In this paper, I will describe methods for monitoring kinase activity, investigating kinase-substrate specificity, examining phosphorylation in planta and the determination of phosphorylation sites in a protein. In addition, strategic considerations for experimental design and variables will be discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号