首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9148篇
  免费   709篇
  国内免费   705篇
  2024年   24篇
  2023年   244篇
  2022年   239篇
  2021年   359篇
  2020年   366篇
  2019年   530篇
  2018年   426篇
  2017年   360篇
  2016年   356篇
  2015年   358篇
  2014年   434篇
  2013年   1130篇
  2012年   330篇
  2011年   356篇
  2010年   306篇
  2009年   401篇
  2008年   446篇
  2007年   393篇
  2006年   384篇
  2005年   392篇
  2004年   321篇
  2003年   305篇
  2002年   245篇
  2001年   226篇
  2000年   143篇
  1999年   159篇
  1998年   134篇
  1997年   156篇
  1996年   116篇
  1995年   122篇
  1994年   86篇
  1993年   73篇
  1992年   67篇
  1991年   47篇
  1990年   66篇
  1989年   39篇
  1988年   44篇
  1987年   38篇
  1986年   43篇
  1985年   47篇
  1984年   60篇
  1983年   39篇
  1982年   47篇
  1981年   25篇
  1980年   24篇
  1979年   19篇
  1978年   5篇
  1977年   9篇
  1976年   10篇
  1974年   6篇
排序方式: 共有10000条查询结果,搜索用时 390 毫秒
21.
22.
23.
《Free radical research》2013,47(6-7):451-462
Abstract

Aging and neurodegenerative diseases share oxidative stress cell damage and depletion of endogenous antioxidants as mechanisms of injury, phenomena that are occurring at different rates in each process. Nevertheless, as the central nervous system (CNS) consists largely of lipids and has a poor catalase activity, a low amount of superoxide dismutase and is rich in iron, its cellular components are damaged easily by overproduction of free radicals in any of these physiological or pathological conditions. Thus, antioxidants are needed to prevent the formation and to oppose the free radicals damage to DNA, lipids, proteins, and other biomolecules. Due to endogenous antioxidant defenses are inadequate to prevent damage completely, different efforts have been undertaken in order to increase the use of natural antioxidants and to develop antioxidants that might ameliorate neural injury by oxidative stress. In this context, natural antioxidants like flavonoids (quercetin, curcumin, luteolin and catechins), magnolol and honokiol are showing to be the efficient inhibitors of the oxidative process and seem to be a better therapeutic option than the traditional ones (vitamins C and E, and β-carotene) in various models of aging and injury in vitro and in vivo conditions. Thus, the goal of the present review is to discuss the molecular basis, mechanisms of action, functions, and targets of flavonoids, magnolol, honokiol and traditional antioxidants with the aim of obtaining better results when they are prescribed on aging and neurodegenerative diseases.  相似文献   
24.
Onosma echioides Linn (Boraginaceae) is the most frequently used curative herb widely used for kidney obstruction, sciatic pain, and gout. The present study was designed to investigate the therapeutic effects of n-hexane bark extract of O. echioides (OE) L. root in vivo against Streptozotocin-induced diabetic neuropathy in SD rats. For in vivo activity, the experiment was categorized into five different groups (n = 5). Group-I was considered as nondiabetic/normal control (NC) treated with 0.5% carboxymethyl cellulose (CMC), Group II as diabetic control, Group-III, IV, and V served as diabetic treated with OE 50, OE 100, and pregabalin at a dose of 50, 100, and 10 mg/kg body weight, orally, respectively. Body weight, blood glucose, oral glucose tolerance test, behavioral studies (motor coordination test, thermal hyperalgesia, cold allodynia, locomotor activity, oxidative biomarkers (thio barbituric acid reactive substances [TBARS], superoxide dismutase [SOD], glutathione [GSH], and catalase), and histopathology of the sciatic nerve were performed. Treatment with OE showed a dose-dependent increase in neuroprotective activity by improving the myelination and decreasing the axonal swelling of nerve fibers. The verdicts of behavioral activities showed a remarkable effect on animals after the treatment of extract and standard drug pregabalin. In conclusion, our findings supported the traditional application of OE and explored its importance in the management of diabetic neuropathy. Additional clinical experiments may provide novel therapeutic drugs for diabetes and its complications.  相似文献   
25.
Information concerning the chemical state of trace elements in biological systems generally has not been available. Such information for toxic elements and metals in metalloproteins could prove extremely valuable in the elucidation of their metabolism and other biological processes. The shielding of core electrons by binding electrons affect the energy required for creating inner-shell holes. Furthermore, the molecular binding and symmetry of the local environment of an atom affect the absorption spectrum in the neighborhood of the absorption edge. X-ray absorption near-edge structure (XANES) using synchrotron radiation excitation can be used to provide chemical speciation information for trace elements at concentrations as low as 10 ppm. The structure and position of the absorption curve in the region of an edge can yield vital data about the local structure and oxidation state of the trace element in question. Data are most easily interpreted by comparing the observed edge structure and position with those of model compounds of the element covering the entire range of possible oxidation states. Examples of such analyses will be reviewed.  相似文献   
26.
Summary There is a protease, which is activated by Ca2+ (about 100 M), works at neutral pH and exists in the cytoplasm inChara australis. This protease may correspond to calpain, the calcium-activated neutral protease, which has been studied in animal cells. This is the first report showing the existence of a calcium-activated protease in plant cells.  相似文献   
27.
From various oxic or anoxic habitats several strains of bacteria were isolated which in the absence of molecular oxygen oxidized phenol to CO2 with nitrate as the terminal electron acceptor. All strains grew in defined mineral salts medium; two of them were further characterized. The bacteria were facultatively anaerobic Gramnegative rods; metabolism was strictly oxidative with molecular oxygen, nitrate, or nitrite as electron acceptor. The isolates were tentatively identified as pseudomonads. Besides phenol many other benzene derivatives like cresols or aromatic acids were anaerobically oxidized in the presence of nitrate. While benzoate or 4-hydroxybenzoate was degraded both anaerobically and aerobically, phenol was oxidized under anaerobic conditions only. Reduced alicyclic compounds were not degraded. Preliminary evidence is presented that the first reaction in anaerobic phenol oxidation is phenol carboxylation to 4-hydroxybenzoate.  相似文献   
28.
Extracts of denitrifying bacteria grown anaerobically with phenol and nitrate catalyzed an isotope exchange between 14CO2 and the carboxyl group of 4-hydroxybenzoate. This exchange reaction is ascribed to a novel enzyme, phenol carboxylase, initiating the anaerobic degradation of phenol by para-carboxylation to 4-hydroxybenzoate. Some properties of this enzyme were determined by studying the isotope exchange reaction. Phenol carboxylase was rapidly inactivated by oxygen; strictly anoxic conditions were essential for preserving enzyme activity. The exchange reaction specifically was catalyzed with 4-hydroxybenzoate but not with other aromatic acids. Only the carboxyl group was exchanged; [U-14C]phenol was not exchanged with the aromatic ring of 4-hydroxybenzoate. Exchange activity depended on Mn2+ and inorganic phosphate and was not inhibited by avidin. Ortho-phosphate could not be substituted by organic phosphates nor by inorganic anions; arsenate had no effect. The pH optimum was between pH 6.5–7.0. The specific activity was 100 nmol 14CO2 exchange · min-1 · mg-1 protein. Phenol grown cells contained 4-hydroxybenzoyl CoA synthetase activity (40 nmol · min-1 · mg-1 protein). The possible role of phenol carboxylase and 4-hydroxybenzoyl CoA synthetase in anaerobic phenol metabolism is discussed.  相似文献   
29.
The pathway for the aerobic catabolism of 1,3,5-trihydroxybenzene (phloroglucinol) by a new strain of Penicillium was investigated using both in vivo and in vitro cell-free systems. The fungal strain was isolated by enrichment on phloroglucinol and identified as P. simplicissimum (Oud) Thom. It grew optimally at pH 5.5 and 27°C with 119 mM (1.5%w/v) of phloroglucinol in a basal mineral salts medium. Vapours of the crystalline substrate placed in a Petri-plate lid supported the growth of the fungal colonies on the agar surface. Mycelia grown on phloroglucinol accumulated 1,2,4-trihydroxybenzene and resorcinol in the medium. Washed, resting mycelia grown on phloroglucinol, when resuspended in a buffer utilized oxygen in the presence of catechol, resorcinol, pyrogallol and phloroglucinol. A NADPH-dependent reductase in the cell-free extract reduced phloroglucinol to dihydrophloroglucinol. This electron donor could not be replaced by NADH. Resorcinol hydroxylase, phloroglucinol reductase, catechol-1,2-oxygenase, and catechol-2,3-oxygenase were detected in cell-free extracts of mycelia grown on phloroglucinol. The possible steps in the degradation of phloroglucinol are discussed.  相似文献   
30.
A strain of Pseudomonas putida was isolated that was able to degrade 2-chloroethanol. The degradation proceeded via 2-chloroacetaldehyde and chloroacetate to glycolate. In crude extracts the enzymes for this degradation pathway could be detected. All enzymes proved to be inducible. The dehalogenase that catalyzed the dehalogenation of chloroacetate to glycolate was further characterized. It consisted of a single polypeptide chain with a molecular mass of 28 kDa. After induction the dehalogenase was expressed at a high level. In a mutant resistant to high concentrations of 2-chloroethanol the dehalogenase was no longer expressed. The mechanism of resistance seemed to be due to the inability to convert chloroacetate and export of this compound out of the cell.Non-standard abbreviations CEO 2-chloroethanol - DCPIP 2,6-dichlorophenolindophenol - FPLC fast protein liquid chromatography - PAGE polyacrylamide gelelectrophoresis - PES phenazine ethosulfate - PMS phenazine methosulfate - PQQ pyrroloquinoline quinone  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号