首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   253篇
  免费   14篇
  国内免费   13篇
  2023年   5篇
  2022年   5篇
  2021年   7篇
  2020年   6篇
  2019年   13篇
  2018年   11篇
  2017年   17篇
  2016年   7篇
  2015年   11篇
  2014年   19篇
  2013年   22篇
  2012年   13篇
  2011年   12篇
  2010年   7篇
  2009年   8篇
  2008年   7篇
  2007年   14篇
  2006年   13篇
  2005年   5篇
  2004年   4篇
  2003年   5篇
  2002年   5篇
  2001年   4篇
  2000年   5篇
  1999年   8篇
  1998年   7篇
  1997年   7篇
  1996年   4篇
  1995年   2篇
  1994年   2篇
  1993年   2篇
  1992年   1篇
  1991年   3篇
  1990年   4篇
  1989年   3篇
  1988年   1篇
  1987年   1篇
  1985年   2篇
  1984年   3篇
  1982年   1篇
  1981年   1篇
  1979年   1篇
  1978年   1篇
  1975年   1篇
排序方式: 共有280条查询结果,搜索用时 15 毫秒
11.
操作含长插入片段的DNA克隆时 ,经常需要进行亚克隆和测序实验。通常的方法首先是得到插入片段的限制性内切酶谱 ,然后选择合适的内切酶消化DNA ,分离靶片段 ,将其连接入质粒载体中进行下一步操作。但这种方法工作量大 ,步骤繁琐。在此 ,介绍一种不需要做限制性内切酶谱分析 ,而根据靶片段的旁侧序列直接进行亚克隆实验的方法。首先 ,选择合适的限制性内切酶消化含长插入片段的DNA克隆 ,其中一种酶切在已知的旁侧序列上 ,另一为随机选择 ;然后酶切混合物与线性化的质粒载体连接 ,转化细菌得到一“亚克隆库” ;将其中的克隆挑选入 96孔板培养后 ,按行或列混合菌液得到相应的“pool” ;最后 ,用PCR方法筛选获得含靶DNA片段的阳性克隆 ,其中所用的引物一个与已知的旁侧DNA序列配对 ,另一个与质粒载体上序列配对 ,PCR扩增已知的旁侧DNA片段以鉴定阳性克隆。多次独立实验表明该方法简单有效 ,可广泛用于亚克隆和DNA步移实验  相似文献   
12.
从云南轮马热泉下游淤泥中筛选得到了一株产耐热普鲁兰酶菌株LM14-2.根据形态特征及16S rRNA序列同源性分析,初步判定为Anoxybacillus sp.LM14-2.该菌株发酵上清液中有耐热普鲁兰酶积累,其反应最适pH值为6.0,最适温度为70℃.利用染色体步移技术获得了完整的普鲁兰酶编码基因(HQ660582),经序列相似性进一步分析,确定该蛋白与Ⅰ型普鲁兰酶保守区b相吻合.通常的普鲁兰酶在高温下很快失活,难以满足淀粉加工,洗涤剂等相关工业的需求,而该新型的耐热普鲁兰醇的作用温度广泛,热稳定性较好,65℃保温55 h后达到其半衰期,具有广阔的开发应用前景.  相似文献   
13.
麻疯树苯丙氨酸解氨酶启动子的克隆和表达载体的构建   总被引:2,自引:0,他引:2  
张淑文  高帆  秦小波  徐莺  陈放 《植物研究》2007,27(4):455-459
苯丙氨酸解氨酶(phenylalanine ammonia lyase, PAL)是苯丙烷类代谢途径的关键酶,催化苯丙氨酸转化为肉桂酸,促进黄酮、香豆素等次生代谢物的生成。本文根据已克隆的麻疯树苯丙氨酸解氨酶基因JcPAL的序列设计引物,通过DNA步移技术,克隆出长度为1 334 bp的JcPAL基因起始密码子上游序列。序列分析显示其不仅具备CAAT、TATA盒这些保守元件,而且包含多种胁迫诱导元件,特别是在序列中发现一些苯丙氨酸解氨酶特有的元件。为了鉴定JcPAL基因的启动子元件,分别将长度不同的5′端侧翼区缺失体定向插入载体pBI121中, 取代原有的CaMV35S启动子,构建了4个驱动报告基因GUS的植物表达载体。  相似文献   
14.
Work performance and individual joint contribution to total work are important information for creating training protocols, but were not assessed so far for sloped walking. Therefore, the purpose of this study was to analyze lower limb joint work and joint contribution of the hip, knee and ankle to total lower limb work during sloped walking in a healthy population. Eighteen male participants (27.0 ± 4.7 yrs, 1.80 ± 0.05 m, 74.5 ± 8.2 kg) walked on an instrumented ramp at inclination angles of 0°, ±6°, ±12° and ±18° at 1.1 m/s. Kinematic and kinetic data were captured using a motion-capture system (Vicon) and two force plates (AMTI). Joint power curves, joint work (positive, negative, absolute) and each joint’s contribution to total lower limb work were analyzed throughout the stance phase using an ANOVA with repeated measures. With increasing inclination positive joint work increased for the ankle and hip joint and in total during uphill walking. Negative joint work increased for each joint and in total work during downhill walking. Absolute work was increased during both uphill (all joints) and downhill (ankle & knee) walking. Knee joint contribution to total negative and absolute work increased during downhill walking while hip and ankle contributions decreased. This study identified, that, when switching from level to a 6° and from 6° to a 12° inclination the gain of individual joint work is more pronounced compared to switching from 12° to an 18° inclination. The results might be used for training recommendations and specific training intervention with respect to sloped walking.  相似文献   
15.
In this study, we have analysed heel strike (HS) and toe off (TO) of normal individuals and hemiplegic patients, taking advantage of output curves acquired from various sensors, and verified the validity of sensor detection methods and their effectiveness when they were used for hemiplegic gaits. Gait phase detections using three different motion sensors were valid, since they all had reliabilities more than 95%, when compared with foot velocity algorithm. Results showed that the tilt sensor and the gyrosensor could detect gait phase more accurately in normal individuals. Vertical acceleration could detect HS most accurately in hemiplegic patient group A. The gyrosensor could detect HS and TO most accurately in hemiplegic patient groups A and B. The detection of TO from all sensor signals was valid in both the patient groups A and B. However, the vertical acceleration detected HS validly in patient group A and the gyrosensor detected HS validly in patient group B.  相似文献   
16.
目的:分析早期强化步行基本功训练对脑卒中预后的影响。方法:选取我院2008年10月一2011年10月收治的176例恢复期脑卒中患者,按照随机数字表分为观察组及对照组,各88例,均接受常规药物治疗和康复训练,观察组在此基础上接受早期强化步行基本功训练,对比两组患者的预后。结果:两组患者治疗后FMA—LE、BBS及MBI评分均见上升,观察组较对照组上升程度更为明显(P〈0.05),T2时期观察组评分亦见升高,而对照组评分与T1时期相比无明显统计学差异(P〉0.05);两组患者治疗后步长、步宽及步速均见上升,观察组较对照组上升程度更为明显(P〈0.05),T2时期观察组步态参数亦见升高,而对照组步态参数与T1时期相比无明显统计学差异(P〉0.05)。结论:早期强化步行基本功训练能够有效改善脑卒中患者下肢运动功能和平衡能力,保证治疗后步行功能,避免生活质量下降,该康复方法值得广泛推广。  相似文献   
17.
The tailing genome walking strategies are simple and efficient. However, they sometimes can be restricted due to the low stringency of homo-oligomeric primers. Here we modified their conventional tailing step by adding polythymidine and polyguanine to the target single-stranded DNA (ssDNA). The tailed ssDNA was then amplified exponentially with a specific primer in the known region and a primer comprising 5′ polycytosine and 3′ polyadenosine. The successful application of this novel method for identifying integration sites mediated by φC31 integrase in goat genome indicates that the method is more suitable for genomes with high complexity and local GC content.  相似文献   
18.
The purpose of this study was to characterize responses in oxygen uptake ( V·O2), heart rate (HR), perceived exertion (OMNI scale) and integrated electromyogram (iEMG) readings during incremental Nordic walking (NW) and level walking (LW) on a treadmill. Ten healthy adults (four men, six women), who regularly engaged in physical activity in their daily lives, were enrolled in the study. All subjects were familiar with NW. Each subject began walking at 60 m/min for 3 minutes, with incremental increases of 10 m/min every 2 minutes up to 120 m/min V·O2 , V·E and HR were measured every 30 seconds, and the OMNI scale was used during the final 15 seconds of each exercise. EMG readings were recorded from the triceps brachii, vastus lateralis, biceps femoris, gastrocnemius, and tibialis anterior muscles. V·O2 was significantly higher during NW than during LW, with the exception of the speed of 70 m/min (P < 0.01). V·E and HR were higher during NW than LW at all walking speeds (P < 0.05 to 0.001). OMNI scale of the upper extremities was significantly higher during NW than during LW at all speeds (P < 0.05). Furthermore, the iEMG reading for the VL was lower during NW than during LW at all walking speeds, while the iEMG reading for the BF and GA muscles were significantly lower during NW than LW at some speeds. These data suggest that the use of poles in NW attenuates muscle activity in the lower extremities during the stance and push-off phases, and decreases that of the lower extremities and increase energy expenditure of the upper body and respiratory system at certain walking speeds.  相似文献   
19.
Evaluating the effects of load carriage on gait balance stability is important in various applications. However, their quantification has not been rigorously addressed in the current literature, partially due to the lack of relevant computational indices. The novel Dynamic Gait Measure (DGM) characterizes gait balance stability by quantifying the relative effects of inertia in terms of zero-moment point, ground projection of center of mass, and time-varying foot support region. In this study, the DGM is formulated in terms of the gait parameters that explicitly reflect the gait strategy of a given walking pattern and is used for computational evaluation of the distinct balance stability of loaded walking. The observed gait adaptations caused by load carriage (decreased single support duration, inertia effects, and step length) result in decreased DGM values (p < 0.0001), which indicate that loaded walking motions are more statically stable compared with the unloaded normal walking. Comparison of the DGM with other common gait stability indices (the maximum Floquet multiplier and the margin of stability) validates the unique characterization capability of the DGM, which is consistently informative of the presence of the added load.  相似文献   
20.
Positive and negative work are generated at the lower limb joints in order to locomote over various terrains. Joint work quantifies the changes in energy that are necessary to adapt gait to environmental demands. The aim of this study was to quantify 3D joint work at the hip, knee, and ankle during slope walking. Work was calculated for ten males (23.9 ± 1.1 years) walking at a self-selected speed on inclines and declines (−20, −12, −6, 0, 6, 12, 20 degrees). Sagittal positive work significantly increased at the hip, knee, and ankle for incline walking (for example, hip positive work increased 153%, 280%, and 453% for 6, 12, and 20 degrees, respectively; knee and ankle positive work also increased) (p ≤ 0.05), in order to raise and propel the body forward. Sagittal negative work increased significantly at the hip, knee and ankle for decline walking (for example, knee negative work increased 193%, 355%, and 496% for −6, −12, and −20 degrees, respectively; hip and ankle negative work also increased) (p ≤ 0.05), in order to control body descent. These substantial changes in work will be especially challenging for people with compromised strength due to age and disease. Furthermore, changes in work were not limited to the sagittal plane: 46% of the total hip joint work occurred in the frontal and transverse planes for six degree decline walking. Thus, decline walking placed greater demands on the hip ab/adductors and rotators, and this may be related to the greater risk of falls observed for descent versus ascent.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号