首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   516篇
  免费   27篇
  国内免费   6篇
  2024年   1篇
  2023年   4篇
  2022年   3篇
  2021年   7篇
  2020年   5篇
  2019年   9篇
  2018年   6篇
  2017年   9篇
  2016年   11篇
  2015年   15篇
  2014年   20篇
  2013年   31篇
  2012年   15篇
  2011年   26篇
  2010年   16篇
  2009年   25篇
  2008年   26篇
  2007年   37篇
  2006年   29篇
  2005年   23篇
  2004年   30篇
  2003年   18篇
  2002年   27篇
  2001年   19篇
  2000年   17篇
  1999年   12篇
  1998年   8篇
  1997年   13篇
  1996年   11篇
  1995年   10篇
  1994年   14篇
  1993年   9篇
  1992年   16篇
  1991年   6篇
  1990年   3篇
  1989年   3篇
  1988年   1篇
  1987年   1篇
  1986年   2篇
  1985年   3篇
  1984年   2篇
  1983年   1篇
  1982年   2篇
  1981年   1篇
  1980年   1篇
  1977年   1篇
排序方式: 共有549条查询结果,搜索用时 15 毫秒
11.
Hemolymph of adultAplysia californica significantly affects neurite outgrowth of identified neurons of the land snailHelix pomatia. The metacerebral giant cell (MGC) and the motoneuron C3 from the cerebral ganglion and the neuron B2 from the buccal ganglion ofH. pomatia were isolated by enzymatic and mechanical dissociation and plated onto poly-l-lysine-coated dishes either containing culture medium conditioned byHelix ganglia, or pre-treated withAplysia hemolymph. To determine the extent of neuronal growth we measured the neurite elongation and the neuritic field of cultured neurons at different time points.Aplysia hemolymph enhances the extent and rate of linear outgrowth and the branching domain ofHelix neurons. With the hemolymph treatment the MGC neuron more consistently forms specific chemical synapses with its follower cell B2, and these connections are more effective than those established in the presence of the conditioned medium.  相似文献   
12.
Metabolic tolerance of low intracellular pH (pH(i)) was studied in well-oxygenated, perfused, neonatal, rat cerebrocortical brain slices (350 microns thick) by inducing severe hypercapnia. In each of 17 separate experiments 80 brain slices (approximately 3.2 g wet weight) were suspended in an NMR tube, perfused with artificial CSF (ACSF), and studied at 4.7 T with 31P and 1H NMR spectroscopy. Spectra obtained every 5 min monitored relative concentrations of lactate or high-energy phosphate metabolites, from which pH(i) and extracellular pH were determined. Unperturbed slice preparations were metabolically stable for > 10 h, with no significant changes occurring in pHi, ATP, phosphocreatine (PCr), inorganic phosphate, or lactate. Different levels of hypercapnia were produced by sequentially perfusing slices with the following different ACSF batches, each having previously been equilibrated with a specific mixture of CO2 in oxygen: (a) 10% CO2, 15 min of perfusion; (b) 30% CO2, 15 min of perfusion; (c) 50% CO2, 15 min of perfusion; (d) 70% CO2, 30 min of perfusion; (e) 50% CO2, 15 min of perfusion; (f) 30% CO2, 15 min of perfusion; and (g) 10% CO2, 15 min of perfusion. At the completion of this protocol slices were again perfused with fresh ACSF that was equilibrated with a 95% O2/5% CO2 gas mixture. In each of five separate 1H and 31P experiments, brain slices were recovered within 2 h after termination of exposure to high CO2. The pHi was determined from measurements of the chemical shift difference between phosphoethanolamine and PCr, using a calibration curve obtained for our preparation.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   
13.
Pathogenesis and treatment for diabetic neuropathy are still complex. A deficit of neurotrophic factors affecting Schwann cells is a very important cause of diabetic neuropathy. Neuritin is a newly discovered potential neurotrophic factor. In this study, we explored the effect of exogenous neuritin on survivability and functions of diabetic Schwann cells of rats with experimental diabetic neuropathy. Diabetic neuropathy was induced in rats. 12‐week diabetic rats contrasted with non‐diabetic normal rats had decreased levels of serum neuritin and slowed nerve conduction velocities (NCVs). Schwann cells isolated from these diabetic rats and cultured in high glucose showed reduced cell neuritin mRNA and protein and supernatant neuritin protein, increased apoptosis rates, increased caspase‐3 activities and progressively reduced viability. In contrast, exogenous neuritin treatment reduced apoptosis and improved viability, with elevated Bcl‐2 levels (not Bax) and decreased caspase‐3 activities. Co‐cultured with diabetic Schwann cells pre‐treated with exogenous neuritin in high glucose media, and diabetic DRG neurons showed lessened decreased neurite outgrowth and supernatant NGF concentration occurring in co‐culture of diabetic cells. Exogenous neuritin treatment ameliorated survivability and functions of diabetic Schwann cells of rats with diabetic neuropathy. Our study may provide a new mechanism and potential treatment for diabetic neuropathy.  相似文献   
14.
15.
The generation of human induced pluripotent stem cells (hiPSCs) requires the collection of donor tissue, but clinical circumstances in which the interests of patients have highest priority may compromise the quality and availability of cells that are eventually used for reprogramming. Here we compared (i) skin biopsies stored in standard physiological salt solution for up to two weeks (ii) blood outgrowth endothelial cells (BOECs) isolated from fresh peripheral blood and (iii) children's milk teeth lost during normal replacement for their ability to form somatic cell cultures suitable for reprogramming to hiPSCs. We derived all hiPSC lines using the same reprogramming method (a conditional (FLPe) polycistronic lentivirus) and under similar conditions (same batch of virus, fetal calf serum and feeder cells). Skin fibroblasts could be reprogrammed robustly even after long-term biopsy storage. Generation of hiPSCs from juvenile dental pulp cells gave similar high efficiencies, but that of BOECs was lower. In terms of invasiveness of biopsy sampling, biopsy storage and reprogramming efficiencies skin fibroblasts appeared best for the generation of hiPSCs, but where non-invasive procedures are required (e.g. for children and minors) dental pulp cells from milk teeth represent a valuable alternative.  相似文献   
16.
The non‐selective cationic transient receptor canonical 6 (TRPC6) channels are involved in synaptic plasticity changes ranging from dendritic growth, spine morphology changes and increase in excitatory synapses. We previously showed that the TRPC6 activator hyperforin, the active antidepressant component of St. John's wort, induces neuritic outgrowth and spine morphology changes in PC12 cells and hippocampal CA1 neurons. However, the signaling cascade that transmits the hyperforin‐induced transient rise in intracellular calcium into neuritic outgrowth is not yet fully understood. Several signaling pathways are involved in calcium transient‐mediated changes in synaptic plasticity, ranging from calmodulin‐mediated Ras‐induced signaling cascades comprising the mitogen‐activated protein kinase, PI3K signal transduction pathways as well as Ca2+/calmodulin‐dependent protein kinase II (CAMKII) and CAMKIV. We show that several mechanisms are involved in TRPC6‐mediated synaptic plasticity changes in PC12 cells and primary hippocampal neurons. Influx of calcium via TRPC6 channels activates different pathways including Ras/mitogen‐activated protein kinase/extracellular signal‐regulated kinases, phosphatidylinositide 3‐kinase/protein kinase B, and CAMKIV in both cell types, leading to cAMP‐response element binding protein phosphorylation. These findings are interesting not only in terms of the downstream targets of TRPC6 channels but also because of their potential to facilitate further understanding of St. John's wort extract‐mediated antidepressant activity.

  相似文献   

17.
Four new aromatic meroterpenoids, ganocapenoids A–D (14), together with twelve known analogues (516) were isolated from the fruiting bodies of Ganoderma capense. The structures of new compounds were determined through spectroscopic methods including 1D and 2D NMR and MS analyses. Their absolute configurations were assigned by ECD calculations and specific rotation comparison. The biological activities of these substances toward regulation of lipid metabolism, neurite outgrowth-promoting activity, and AchE inhibition were assessed. Compound 15 was found to be able to block lipid accumulation at a concentration of 20?μM, and compounds 4a, 4b, and 11 show moderate neurite outgrowth-promoting activity at 10?μM, while compounds 3, 6, 11, and 13 exhibit potent AchE inhibition with the IC50 values of 28.6?±?1.9, 18.7?±?1.6, 8.2?±?0.2, 26.0?±?2.9?μM, respectively.  相似文献   
18.
Valproic acid (VPA), a mood stabilizer and anticonvulsant, has a variety of neurotrophic functions; however, less is known about how VPA regulates neurite outgrowth. Here, using N1E-115 neuroblastoma cells as the model, we show that VPA upregulates Gadd45a to trigger activation of the downstream JNK cascade controlling neurite outgrowth. VPA induces the phosphorylation of c-Jun N-terminal kinase (JNK) and the substrate paxillin, while VPA induction of neurite outgrowth is inhibited by JNK inhibitors (SP600125 and the small JNK-binding peptide) or a paxillin construct harboring a Ser 178-to-Ala mutation at the JNK phosphorylation. Transfection of Gadd45a, acting through the effector MEKK4, leads to the phosphorylation of the JNK cascade. Conversely, knockdown of Gadd45a with siRNA reduces the effect of VPA. Taken together, these results suggest that upregulation of Gadd45a explains one of the mechanisms whereby VPA induces the neurotrophic effect, providing a new role of Gadd45a in neurite outgrowth.  相似文献   
19.
The roles of cyclin-dependent kinase 5 in dendrite and synapse development   总被引:1,自引:0,他引:1  
Since the isolation of cyclin-dependent kinase 5 (Cdk5), this proline-directed serine/threonine kinase has been demonstrated as an important regulator of neuronal migration, neuronal survival and synaptic functions. Recently, a number of players implicated in dendrite and synapse development have been identified as Cdk5 substrates. Neurite extension, synapse and spine maturation are all modulated by a myriad of extracellular guidance cues or trophic factors. Cdk5 was recently demonstrated to regulate signaling downstream of some of these extracellular factors, in addition to modulating Rho GTPase activity, which regulates cytoskeletal dynamics. In this communication, we summarize our existing knowledge on the pathways and mechanisms through which Cdk5 affects dendrite, synapse and spine development.  相似文献   
20.
LRRC4, leucine-rich repeat C4 protein, has been identified in human (GenBank accession No. AF196976), mouse (GenBank accession No. DQ177325), rat (GenBank accession No. DQ119102) and bovine (GenBank accession No. DQ 164537) with identical domains. In terms of their similarity, the genes encoding LRRC4 in these four mammalian species are orthogs and therefore correspond to the same gene entity. Based on previous research, and using in situ hybridization, we found that LRRC4 had the strongest expression in hippocampal CA1 and CA2, the granule cells of the dentate gyrus region, the mediodoral thalamic nucleus, and cerebella Purkinje cell layers. Using a P19 cell model, we also found that LRRC4 participates in the differentiation of neuron and glia cells. In addition, extracellular proteins containing both an LRR cassette and immunoglobulin domains have been shown to participate in axon guidance. Our data from neurite outgrowth assays indicated that LRRC4 promoted neurite extension of hippocampal neurons, and induced differentiation of glioblastoma U251 cells into astrocyte-like cells, confirmed by morphology observation and glial fibrillary acidic protein expression.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号