全文获取类型
收费全文 | 1128篇 |
免费 | 65篇 |
国内免费 | 93篇 |
专业分类
1286篇 |
出版年
2024年 | 5篇 |
2023年 | 9篇 |
2022年 | 23篇 |
2021年 | 12篇 |
2020年 | 30篇 |
2019年 | 20篇 |
2018年 | 22篇 |
2017年 | 23篇 |
2016年 | 31篇 |
2015年 | 36篇 |
2014年 | 52篇 |
2013年 | 60篇 |
2012年 | 33篇 |
2011年 | 21篇 |
2010年 | 34篇 |
2009年 | 32篇 |
2008年 | 47篇 |
2007年 | 43篇 |
2006年 | 53篇 |
2005年 | 45篇 |
2004年 | 48篇 |
2003年 | 43篇 |
2002年 | 44篇 |
2001年 | 32篇 |
2000年 | 29篇 |
1999年 | 27篇 |
1998年 | 26篇 |
1997年 | 30篇 |
1996年 | 31篇 |
1995年 | 28篇 |
1994年 | 33篇 |
1993年 | 34篇 |
1992年 | 23篇 |
1991年 | 32篇 |
1990年 | 16篇 |
1989年 | 19篇 |
1988年 | 26篇 |
1987年 | 17篇 |
1986年 | 20篇 |
1985年 | 26篇 |
1984年 | 24篇 |
1983年 | 10篇 |
1982年 | 9篇 |
1981年 | 9篇 |
1980年 | 8篇 |
1978年 | 3篇 |
1976年 | 1篇 |
1975年 | 2篇 |
1973年 | 2篇 |
1972年 | 2篇 |
排序方式: 共有1286条查询结果,搜索用时 0 毫秒
991.
In stressful conditions, bacteria enter into the viable but non-culturable (VBNC) state; in this state, they are alive but fail to grow on conventional media on which they normally grow and develop into colonies. The molecular basis underlying this state is unknown. We investigated the role of the alternative sigma factor RpoS (σ(38)) in the VBNC induction using Salmonella Dublin, Salmonella Oranienburg and Salmonella Typhimurium LT2. VBNC was induced by osmotic stress in LT2 and Oranienburg. Dublin also entered the VBNC state, but more slowly than LT2 and Oranienburg did. The LT2 rpoS gene was initiated from an alternative initiation codon, TTG; therefore, LT2 had smaller amounts of RpoS than Dublin and Oranienburg. Oranienburg had a single amino acid substitution (D118N) in RpoS (RpoS(SO)). Disruption of rpoS caused rapid VBNC induction. VBNC induction was significantly delayed by Dublin-type RpoS (RpoS(SD)), but only slightly by RpoS(SO). These results indicate that RpoS delays VBNC induction and that the rapid induction of VBNC in LT2 and Oranienburg may be due to lower levels of RpoS and to the D118N amino acid substitution, respectively. Reduced RpoS intracellular level was observed during VBNC induction. During the VBNC induction, Salmonella might regulate RpoS which is important for maintenance of culturablity under stresses. 相似文献
992.
现已证明,在肿瘤发生过程中,司职抗原呈递的树突状细胞的功能存在缺陷和紊乱,从而导致了免疫系统的显著受抑和肿瘤的免疫逃逸.为了探索肿瘤的免疫逃逸机制,利用生物物理学和微观流变学的方法研究了肿瘤来源因素对树突状细胞(dendriticcells,DCs)分化过程的影响.发现来源于肿瘤微环境的细胞因子等成分,导致DCs的渗透脆性增加、细胞膜脂流动性显著下降,而且细胞的转录水平和能量状态也明显改变,导致DCs的抗原摄取能力和活化幼稚T细胞的能力显著下降.所以,DCs的微观流变特性的改变也许是肿瘤免疫逃逸机制的一个方面. 相似文献
993.
994.
川西亚高山森林存在明显的季节性冻土现象, 该地区的土壤经历着初冬冻融、深冬冻结、早春冻融等过程, 同时,该区域冬季受气候变化的影响强烈。为了全面地认识亚高山森林的生态过程, 该研究以川西亚高山针叶林两种主要树种——岷江冷杉(Abies fargesii var. faxoniana)和云杉(Picea asperata)为材料, 研究其叶片及细根内丙二醛含量、渗透调节物质的含量、组织含水量、过氧化物酶活性以及硝酸还原酶活性在季节性冻土期的变化, 同时还比较了冻土期和冻融期细根的比根长, 比表面积, 直径以及组织密度的变化。研究结果显示: 在季节性冻土期, 土壤温度昼夜波动幅度小于空气温度波动幅度, 细根却表现出更强的过氧化物酶活性以及更高的渗透调节物质含量, 说明细根较叶片对季节性冻土更为敏感。与冻结期相比, 冻融期土壤温度、空气温度以及空气相对湿度昼夜波动幅度增加, 促使云杉叶片可溶性糖含量以及两针叶树种叶片内过氧化物酶活性、脯氨酸含量显著增加, 而细根的组织含水量显著降低, 脯氨酸、可溶性蛋白质及可溶性糖含量均显著增加, 表明冻融期对两针叶树种的影响较冻结期更为强烈。岷江冷杉和云杉的过氧化物酶活性及渗透调节物质含量具有相同的变化趋势, 但叶片和细根的膜脂过氧化程度及酶活性变化并不一致, 就岷江冷杉而言, 细根的丙二醛含量显著增加, 而叶片、细根的硝酸还原酶活性均显著降低, 云杉仅叶片的丙二醛含量发生变化, 且显著降低, 说明云杉更能忍耐冻融循环造成的胁迫。研究还发现细根形态在季节性冻土期无显著变化。 相似文献
995.
Guo Li Zhu 《Plant biology (Stuttgart, Germany)》1996,109(1):51-56
Abstract: A new combined turgor/membrane potential probe (T-EP probe) monitored cell turgor and membrane potential simultaneously in single giant cells. The new probe consisted of a silicone oil-filled micropipette (oil-microelectrode), which conducted electric current. Measurements of turgor and hydraulic conductivity were performed as with the conventional cell pressure probe besides the membrane potential. In internodal cells of Chara corallina, steady state turgor (0.5-0.7 MPa) and resting potentials (-200 to ?220 mV) in APW, and hydraulic conductivity (0.07 to 0.21 × 10~5 m s?1 MPa?1) were measured with the new probe, and cells exhibited healthy cytoplasmic streaming for at least 24 h during measurements. When internodal cells of Chara corallina were treated with 30, 20, 10, and 5 mM KCI, turgor responded immediately to all concentrations, and the osmotic changes in the medium were measured. Action potentials, which brought the membrane potential to a steady depolarization that measured the concentration difference of K+ in the medium, were induced in a concentration — dependent delay and occurred only 30, 20, and 10 mM of KCl. When the solution was changed back to APW, the repolarization of membrane potential consisted of a quick and a following slow phase. During the quick phase, which took place immediately and lasted 1 to 3 min, the plasma membrane remained activated. The membrane was gradually deactivated in the slow phase, and entirely deactivated when the membrane potential recovered to the resting potential in APW. Although the activated plasma membrane was permeable to K+, no major ion channels were activated on the tonoplast, and therefore, internodal cells of Chara corallina did not regulate turgor when osmotic potential changed in the surrounding medium. 相似文献
996.
《Journal of Plant Interactions》2013,8(1):354-363
Seeds of four lentil genotypes (Castelluccio, Eston, Pantelleria, and Ustica) were subjected to five levels (0, 10, 15, 18, and 21%) of polyethylene glycol (PEG-6000). Germination percentage, root length, tissue water content (WC), α- and β-amylases, α-glucosidase activities, and osmolyte content were evaluated at 24, 48, and 72 h after starting the germination test. Water stress reduced seed germination percentage, root length, and seedling WC in all cultivars to different extent. The increase in proline content and total soluble sugars was greater for Eston and Castelluccio compared to the other genotypes. The activity of the enzymes involved in the germination process decreased in all cultivars; the activities of α-amylase and α-glucosidase were most negatively affected by osmotic stress, mainly in the drought sensitive Ustica and Pantelleria. Overall, Eston and Castelluccio were able to express greater drought tolerance and consequently could be used as a valuable resource for breeding programs. 相似文献
997.
Melaleuca cuticularis and Casuarina obesa occur in wetlands, whereas Banksia attenuata occurs in adjacent well-drained sandy soils. Salt and waterlogging tolerances in these tree species were studied, as the levels of these stresses have increased in south-western Australia. Seedlings were exposed to 0.01, 200 or 400 mm NaCl, with or without waterlogging, in a sand culture with nutrient solution for 22 d in a glasshouse. Melaleuca cuticularis and C. obesa survived all treatments, and generally maintained high rates of net photosynthesis. Banksia attenuata tolerated neither waterlogging nor salinity. Salt tolerance of M. cuticularis and C. obesa was associated with the regulation of foliar sodium (Na+), chloride (Cl-) and potassium (K+) concentrations. Under saline-waterlogged conditions, this regulation was maintained in M. cuticularis, but was reduced in C. obesa. Foliage of these two species also contained appreciable levels of compatible organic solutes: methyl proline in M. cuticularis and proline in C. obesa; in both cases the concentrations increased at higher salinity. Melaleuca cuticularis formed a higher proportion of aerenchyma in adventitious roots than C. obesa, so enhanced internal root aeration in M. cuticularis might contribute to its higher tolerance of combined salinity and waterlogging. 相似文献
998.
《朊病毒》2013,7(1):26-31
Huntingtin containing an expanded polyglutamine causes neuronal death and Huntington disease. Although expanded huntingtin is found in virtually every cell type, its toxicity is limited to neurons of certain areas of the brain, such as cortex and caudate/putamen. In affected areas of the brain, expanded huntingtin is not found in its intact monomeric form. It is found instead in the form of N-terminal fragments, oligomers and polymers, all of which accumulate in the cortex. Whereas the oligomer is mostly soluble, the polymers and the fragments associate with each other and with other proteins to form the insoluble inclusions characteristic of the disease. It is likely that the aggregates containing expanded huntingtin are toxic to neurons, but it remains to be determined whether the oligomer or the inclusion is the toxic species. 相似文献
999.
Plants may experience environmental stress factors operating in nature either simultaneously or in sequence. In the study, we have acclimated the developing primary leaves of wheat seedlings to high light stress and examined their photosynthetic response to polyethylene glycol (PEG) mediated osmotic stress during different developmental phases including senescence. The high light acclimated leaves show higher level of total carotenoids as compared to their non-acclimated counterparts experiencing osmotic stress during senescence. They also exhibit greater membrane stability as indicated by the measurements of fluorescence polarisation and energy transfer efficiency in photosystem I (PSI) and Photosystem II (PSII). From the data of DCPIP photoreduction and pulse amplitude modulated (PAM) fluorimetry, a similar trend is observed for PSII photochemistry of the leaves experiencing osmotic stress during senescence. Our results may suggest that the stress adaptive potential induced by one stress during development is retained by the leaves and helps to mitigate another stress effect operating in sequence during another developmental phase, namely senescence. 相似文献
1000.