首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1128篇
  免费   65篇
  国内免费   93篇
  1286篇
  2024年   5篇
  2023年   9篇
  2022年   23篇
  2021年   12篇
  2020年   30篇
  2019年   20篇
  2018年   22篇
  2017年   23篇
  2016年   31篇
  2015年   36篇
  2014年   52篇
  2013年   60篇
  2012年   33篇
  2011年   21篇
  2010年   34篇
  2009年   32篇
  2008年   47篇
  2007年   43篇
  2006年   53篇
  2005年   45篇
  2004年   48篇
  2003年   43篇
  2002年   44篇
  2001年   32篇
  2000年   29篇
  1999年   27篇
  1998年   26篇
  1997年   30篇
  1996年   31篇
  1995年   28篇
  1994年   33篇
  1993年   34篇
  1992年   23篇
  1991年   32篇
  1990年   16篇
  1989年   19篇
  1988年   26篇
  1987年   17篇
  1986年   20篇
  1985年   26篇
  1984年   24篇
  1983年   10篇
  1982年   9篇
  1981年   9篇
  1980年   8篇
  1978年   3篇
  1976年   1篇
  1975年   2篇
  1973年   2篇
  1972年   2篇
排序方式: 共有1286条查询结果,搜索用时 0 毫秒
11.
Abstract. Electric-circuit analogue models of the water relations of crassulacean acid metabolism (CAM) succulents such as Agave deserti and Ferocactus acanthodes have predicted diel movement of water between the water-storage parenchyma and the photo-synthetic chlorenchyma. Injection of tritiated water into either tissue in the laboratory confirmed substantial and bidirectional water movements, especially under conditions of wet soil. For A. deserti , water movement from the water-storage parenchyma to the chlorenchyma increased at night as the chlorenchyma osmotic pressure increased. Although nocturnal osmotic pressure increases and transpiration for both species were minimal in the field under dry conditions, diel changes in the deuterium: hydrogen ratio (expressed as ΔD) were similar for the water-storage parenchyma and the chlorenchyma. Such indication of [substantial mixing of water between the tissues over a 24-h cycle was more evident under wet conditions in the field. For A. deserti , ΔD then increased by 32%o from the afternoon to midnight and was essentially identical in the water-storage parenchyma and the chlorenchyma. For F. acanthodes , the diel changes in ΔD were one-third those of A. deserti , and ΔD was always slightly higher for the chlorenchyma than for the water-storage parenchyma, apparently reflecting the lower surface-to-volume ratio of A. deserti. In summary, data obtained using radioactive and stable isotopes strongly supported model predictions concerning diel cycles of internal water distribution for these CAM species.  相似文献   
12.
1. One-year-old seedlings of shade tolerant Acer rubrum and intolerant Betula papyrifera were grown in ambient and twice ambient (elevated) CO2, and in full sun and 80% shade for 90 days. The shaded seedlings received 30-min sun patches twice during the course of the day. Gas exchange and tissue–water relations were measured at midday in the sun plants and following 20 min of exposure to full sun in the shade plants to determine the effect of elevated CO2 on constraints to sun-patch utilization in these species.
2. Elevated CO2 had the largest stimulation of photosynthesis in B. papyrifera sun plants and A. rubrum shade plants.
3. Higher photosynthesis per unit leaf area in sun plants than in shade plants of B. papyrifera was largely owing to differences in leaf morphology. Acer rubrum exhibited sun/shade differences in photosynthesis per unit leaf mass consistent with biochemical acclimation to shade.
4. Betula papyrifera exhibited CO2 responses that would facilitate tolerance to leaf water deficits in large sun patches, including osmotic adjustment and higher transpiration and stomatal conductance at a given leaf-water potential, whereas A. rubrum exhibited large increases in photosynthetic nitrogen-use efficiency.
5. Results suggest that species of contrasting successional ranks respond differently to elevated CO2, in ways that are consistent with the habitats in which they typically occur.  相似文献   
13.
用PEG6000对白花柽柳进行渗透胁迫,以其叶部cDNA为试验方(tester),正常生长的白花柽柳叶部cDNA为驱动方(driver),利用抑制性消减杂交技术(SSH)构建了渗透胁迫下白花柽柳的消减文库。提取重组质粒经PCR检测,插入片段大部分集中在250~650 bp之间。通过对文库阳性克隆的随机测序,获得了如脯氨酸转移蛋白、钙依赖蛋白激酶、亮氨酸拉链蛋白、类转录起始因子蛋白等23个与渗透胁迫有关的EST,它们涉及了植物的渗透调节、信号传递、基因调控、活性氧清除、新陈代谢等生理生化过程。  相似文献   
14.
本文用PEG模拟水分亏缺对春小麦红芒麦和绵阳11号胚芽伸长过程中生长、膨压、渗透势、水势和渗透调节能力与ATP含量、能荷变化及能量代谢间的关系进行了研究。结果表明,通过降低能荷,改变分解代谢与合成代谢的比率,使渗透调节物质积累,增加了幼苗的吸水能力,从而使其在一定的ATP能量水平上维持缓慢生长;抗旱品种红芒麦在水分亏缺下成苗速率较快,能保持一定的ATP能量水平和能荷值,渗透调节和吸水能力都比较强。  相似文献   
15.
The hemolymph osmotic pressure of male Heliothis virescens last instar larvae and pupae can be correlated with the state of spermatogenesis: intermediate (approx. 325 mOsm/kg) osmotic pressures are found in pre-meiotic animals, low (approx. 300 mOsm/kg) osmotic pressures characterize meiosis and elongation, and high (approx. 370 mOsm/kg) osmotic pressures, characterize the tests of diapausing pupae, where mature sperm have disappeared and only pre-meiotic sperm are found. In vitro studies show that, as the osmotic pressure of the medium is increased, spermatogenesis is inhibited and the survival of pre-meiotic cysts is enhanced. It is proposed that the osmotic pressure of the hemolymph plays a role in spermatogenesis and in the preservation of immature cysts during diapause.  相似文献   
16.
A relatively drought tolerant cultivar of maize ( Zea mays L. cv. Pioneer 3950) and a drought tolerant line of sorghum ( Sorghum bicolor [L.] Moench cv. ICSV 112) were grown hydroponically for 11 days. Treatments for non-ionic osmotic and salt stresses were started at the 8th day by addition of polyethylene glycol 6000 and NaCl, respectively, at 200 mOsm equivalent concentrations in the presence or absence of 0. 1 μ M abscisic acid. Relative growth rate was depressed by both stress factors, more severely for maize than sorghum. Abscisic acid increased the growth rate and reverted the negative effect of NaCl in maize, while sorghum was only slightly affected. In general, sorghum had higher levels of K+ and lower levels of Na+ and the K+/Na+ ratio was further increased by abscisic acid treatment. From the pressure-volume curves, osmotic potential, the water potential at turgor loss point, bulk elastic modulus and the water saturation deficit at initial turgor loss were estimated. Most significantly, sorghum had a higher elastic modulus than maize and it decreased under osmotic treatment, while in maize it increased under NaCl stress. The results suggest that bulk tissue turgor was not limiting growth under these conditions and underscores the possible implications of changes in the elastic condition of the cell walls in stress responses.  相似文献   
17.
Salt tolerance of the reed plant Phragmites communis   总被引:6,自引:0,他引:6  
Reed plants ( Phragmites communis Trinius) were grown at NaCl concentrations up to 500 m M and their growth, mineral contents and leaf blade osmotic potential were determined. Addition of NaCl up to 300 m M did not affect growth significantly. Sucrose, Cl-and Na+ concentrations in the shoots increased with the salinity of the medium and the shoot water content decreased. K+ always contributed most to the leaf osmotic potential. Even in the presence of 250 m M NaCl in the rooting medium, the leaf blade contained only 50 mM Na+, suggesting that the plants have an efficient mechanism for Na+ exclusion. 22Na+ uptake experiments suggested that the retranslo-cation of absorbed Na+ from shoots to the rooting medium lowered the uptake of Na+.  相似文献   
18.
The effects of continuous infusion of NMDA receptor antagonist MK-801 on the modulation of NMDA receptor subunits NR1, NR2A, NR2B, and NR2C were investigated by using in situ hybridization study. Differential assembly of NMDA receptor subunits determines their functional characteristics. Continuous intracerebroventricular (i.c.v.) infusion with MK-801 (1 pmol/10 l/h) for 7 days resulted in significant modulations in the NR1, NR2A, and NR2B mRNA levels without producing stereotypic motor syndromes. The levels of NR1 mRNA were significantly increased (9-20%) in the cerebral cortex, striatum, septum, and CA1 of hippocampus in MK-801-infused rats. The levels of NR2A mRNA were significantly decreased (11-16%) in the CA3 and dentate gyrus of hippocampus in MK-801-infused rats. In contrast to NR2A, NR2B subunit mRNA levels were increased (10-14%) in the cerebral cortex, caudate putamen, and thalamus. However, no changes of NR2C subunits in cerebellar granule layer were observed. Using quantitative ligand autoradiography, the binding of NMDA receptor ligand [3H]MK-801 was increased (12-25%) significantly in almost all brain regions except in the thalamus and cerebellum after 7 days infusion with MK-801. These results suggest that region-specific changes of NMDA receptor subunit mRNA and [3H]MK-801 binding are involved in the MK-801-infused adult rats.  相似文献   
19.
The responses to water stress of the bulk modulus of elasticity () and the apoplastic water fraction were examined using six sunflower cultivars of differing capacity for osmotic adjustment (OA). Water stress did not affect the partitioning of water between apoplastic (ca. 20%) and symplastic fractions in leaves which expanded during the exposure to stress in any genotype. Hence, no genotype-linked effects on either the buffering of cell water status during stress or on the estimates of bulk leaf osmotic potential could be expected. Genotypes differed in the degree of change in (estimated from pressure/volume [P/V] curves) and OA (estimated using both ln RWC/ ln o plots and P/V curves) induced by exposure to stress. In three genotypes increased significantly (p=0.05) as a consequence of stress, in another three change were small. OA was the only attribute of the three examined that could have contributed to turgor maintenance under stress. There was a strong negative association between leaf expansion and degree of OA across genotypes (r=–0.91) and a strong positive one between OA and (r=0.94). However all genotypes evidenced some degree of OA. These results are consistent with part of the genotype differences in OA being attributable to variations in leaf expansion during exposure to stress.  相似文献   
20.
An increase in mean and extreme summer temperatures is expected as a consequence of climate changes and this might have an impact on plant development in numerous species. Root chicory (Cichorium intybus L.) is a major crop in northern Europe, and it is cultivated as a source of inulin. This polysaccharide is stored in the tap root during the first growing season when the plant grows as a leafy rosette, whereas bolting and flowering occur in the second year after winter vernalisation. The impact of heat stress on plant phenology, water status, photosynthesis-related parameters, and inulin content was studied in the field and under controlled phytotron conditions. In the field, plants of the Crescendo cultivar were cultivated under a closed plastic-panelled greenhouse to investigate heat-stress conditions, while the control plants were shielded with a similar, but open, structure. In the phytotrons, the Crescendo and Fredonia cultivars were exposed to high temperatures (35 °C day/28 °C night) and compared to control conditions (17 °C) over 10 weeks. In the field, heat reduced the root weight, the inulin content of the root and its degree of polymerisation in non-bolting plants. Flowering was observed in 12% of the heat stressed plants during the first growing season in the field. In the phytotron, the heat stress increased the total number of leaves per plant, but reduced the mean leaf area. Photosynthesis efficiency was increased in these plants, whereas osmotic potential was decreased. High temperature was also found to induced flowering of up to 50% of these plants, especially for the Fredonia cultivar. In conclusion, high temperatures induced a reduction in the growth of root chicory, although photosynthesis is not affected. Flowering was also induced, which indicates that high temperatures can partly substitute for the vernalisation requirement for the flowering of root chicory.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号