首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   474篇
  免费   27篇
  国内免费   4篇
  2023年   13篇
  2022年   16篇
  2021年   19篇
  2020年   20篇
  2019年   21篇
  2018年   22篇
  2017年   12篇
  2016年   10篇
  2015年   13篇
  2014年   21篇
  2013年   23篇
  2012年   14篇
  2011年   15篇
  2010年   10篇
  2009年   16篇
  2008年   22篇
  2007年   24篇
  2006年   22篇
  2005年   25篇
  2004年   20篇
  2003年   20篇
  2002年   11篇
  2001年   16篇
  2000年   10篇
  1999年   15篇
  1998年   14篇
  1997年   8篇
  1996年   6篇
  1995年   8篇
  1994年   5篇
  1993年   3篇
  1992年   7篇
  1991年   3篇
  1990年   1篇
  1989年   2篇
  1988年   1篇
  1987年   2篇
  1986年   2篇
  1985年   2篇
  1984年   1篇
  1983年   1篇
  1982年   2篇
  1981年   3篇
  1980年   1篇
  1979年   2篇
  1978年   1篇
排序方式: 共有505条查询结果,搜索用时 437 毫秒
181.
In mammals, the part of the nervous system responsible for most circadian behavior can be localized to a pair of structures in the hypothalamus known as the suprachiasmatic nucleus (SCN). Importantly, when SCN neurons are removed from the organism and maintained in a brain slice preparation, they continue to generate 24h rhythms in electrical activity, secretion, and gene expression. Previous studies suggest that the basic mechanism responsible for the generation of these rhythms is intrinsic to individual cells in the SCN. If we assume that individual cells in the SCN are competent circadian oscillators, it is obviously important to understand how these cells communicate and remain synchronized with each other. Cell-to-cell communication is clearly necessary for conveying inputs to and outputs from the SCN and may be involved in ensuring the high precision of the observed rhythm. In addition, there is a growing body of evidence that a number of systems-level phenomena could be dependent on the cellular communication between circadian pacemaker neurons. It is not yet known how this cellular synchronization occurs, but it is likely that more than one of the already proposed mechanisms is utilized. The purpose of this review is to summarize briefly the possible mechanisms by which the oscillatory cells in the SCN communicate with each other. (Chronobiology International, 18(4)579–600, 2001)  相似文献   
182.
《Current biology : CB》2020,30(9):1748-1754.e4
  1. Download : Download high-res image (192KB)
  2. Download : Download full-size image
  相似文献   
183.
Prechondrogenic condensation is a critical step for skeletal pattern formation. Our previous study showed that ATP oscillations play an essential role in prechondrogenic condensation because they induce oscillatory secretion. However, the molecular mechanisms that underlie ATP oscillations remain poorly understood. We examined how differential changes in proteins are implicated in ATP oscillations during chondrogenesis by using liquid chromatography/mass spectrometry. Our analysis showed that a number of proteins involved in ATP synthesis/consumption, catabolic/anabolic processes, actin dynamics, cell migration and adhesion were detected at either the peak or the trough of ATP oscillations, which implies that these proteins have oscillatory expression patterns that are coupled to ATP oscillations. On the basis of the results, we suggest that (1) the oscillatory expression of proteins involved in ATP synthesis/consumption and catabolic/anabolic processes can contribute to the generation or maintenance of ATP oscillations and that (2) the oscillatory expression of proteins involved in actin dynamics, cell migration and adhesion plays key roles in prechondrogenic condensation by inducing collective adhesion and migration in cooperation with ATP oscillations. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
184.
《Cell》2022,185(23):4394-4408.e10
  1. Download : Download high-res image (231KB)
  2. Download : Download full-size image
  相似文献   
185.
We discuss the first few stages of olfactory processing in the framework of a layered neural network. Its central component is an oscillatory associative memory, describing the external plexiform layer, that consists of inhibitory and excitatory neurons with dendrodendritic interactions. We explore the computational properties of this neural network and point out its possible functional role in the olfactory bulb. When receiving a complex input that is composed of several odors, the network segments it into its components. This is done in two stages. First, multiple odor input is preprocessed in the glomerular layer via a decorrelation mechanism that relies on temporal independence of odor sources. Second, as the recall process of a pattern consists of associative convergence to an oscillatory attractor, multiple inputs are identified by alternate dominance of memory patterns during different sniff cycles. This could explain how quick analysis of mixed odors is subserved by the rapid sniffing behavior of highly olfactory animals. When one of the odors is much stronger than the rest, the network converges onto it, thus displaying odor masking.  相似文献   
186.
187.
Characteristic steady-state mRNA level oscillations were monitored for the chlorophyll a/b-binding (cab) protein in tomato plants grown under the natural day/night (light/dark) regime as well as under constant environmental conditions. This typical expression pattern was altered when plants were transferred to different light/dark regimes. For example, by shifting the light phase by six hours, a change of the time points of maximum and minimum of expression level was monitored, while the principal oscillation pattern remained the same. It appeared that the transition from dark to light is involved in determining the time points of minima and maxima of mRNA accumulation.After exposing tomato plants to an abnormal light/dark periodicity (e.g. six hours of alternating light/dark) an altered oscillation pattern was determined: within 24 hours two maxima of cab mRNA levels were detected. However, this entrained abnormal rhythm was not manifested at the molecular level and the circadian pattern reappeared under constant environmental conditions (e.g. darkness). This result favours the hypothesis that the oscillation pattern of the cab mRNA in tomato plants is not only endogenous but also hereditary.  相似文献   
188.
Phase locking of biological clocks   总被引:1,自引:0,他引:1  
Radial isochron clocks (RICs) and their response to external signals and coupling with other RICs are studied. RICs are derived as phase approximations to self-sustained oscillators. Their response to single impulses (phase resetting) and to repetitive impulses is determined. This response may be harmonic or chaotic. Finally, the effect of coupling between clocks is studied. Simple coupling is shown to exhibit rhythm splitting like that observed in fish and small mammals. New phase locking results for general weakly coupled RIC systems are also derived.Supported in part by the National Science Foundation under grants MCS-80-15359 (FCH) and MCS-79-02505 (JPK)  相似文献   
189.
The amplitude of diel oscillations in photosynthesis as a function of irradiance varied with the growth phase in a marine phytoplankton species. The common centric diatom (Bacillariophyta), Ditylum brightwellii (West) Grun., showed strong periodicity in the photosynthesis-irradiance (P-I) relationship, which damped progressively from early to late exponential and stationary phase. These findings suggest that short-term temporal characteristics of phytoplankton production depend on factors which affect growth, and that the amplitude is most enhanced at maximal growth rates likely to be encountered in the natural environment.  相似文献   
190.
Plasmodia ofPhysarum polycephalum were analyzed with the aid of cinematography and the infrared reflection technique for characterization of the phase behavior of their oscillating contraction activity, with special emphasis placed on the effects of temperature gradients. In response to temperature gradients, phase gradients were documented cinematographically as well as by infrared registration. A quantitative evaluation of the cinematographically recorded phenomena was carried out with the aid of streak photography. The phase gradient is directed across the region of the temperature gradient with a delay in phase toward the colder side. The correspondingly generated waves are as short as 1 mm and are propagated toward the colder region. A comparison of these waves with the known flickering phenomena in cinematographic films reveals a common nature of both.Supported by Deutsche Forschungsgemeinschaft.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号