首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   30篇
  免费   2篇
  32篇
  2019年   1篇
  2017年   1篇
  2016年   1篇
  2014年   1篇
  2010年   1篇
  2009年   1篇
  2008年   1篇
  2007年   2篇
  2006年   4篇
  2005年   4篇
  2004年   1篇
  2003年   3篇
  1999年   2篇
  1998年   1篇
  1997年   1篇
  1995年   2篇
  1991年   2篇
  1990年   1篇
  1988年   1篇
  1985年   1篇
排序方式: 共有32条查询结果,搜索用时 15 毫秒
11.
The effect of oral administration of sodium orthovanadate (SOV) and Trigonella foenum graecum seed powder (TSP), a medicinal plant used extensively in Asia, on the mitochondrial metabolism in the alloxan diabetic rats has been investigated. Rats were injected with alloxan monohydrate (20 mg/100 g body wt) or vehicle (Na-acetate buffer), the former were treated with either 2 IU insulin i.p., 0.6 mg/ml SOV ad libitum, 5% TSP ad libitum, and a combination of 0.2% SOV and 5% TSP ad libitum for 21 days. Selected rate-limiting enzymes of the tricarboxylic acid cycle, hydrogen shuttle system, ketone body metabolism, amino acid metabolism and urea cycle were measured in the mitochondrial and cytosolic fractions of liver, kidney and brain tissues of the experimental rats. Majority of the mitochondrial enzymes in the tissues of the diabetic rats had significantly higher activities compared to the control rats. Similarly, the activities of mitochondrial and cytosolic aminotransferases and arginase were significantly higher in liver and kidney tissues of the diabetic rats. The separate administrations of SOV and TSP to diabetic rats were able to restore the activities of these enzymes to control values. The lower dose of SOV (0.2%) administered in combination with TSP to diabetic rats lowered the enzyme activities more significantly than when given in a higher dose (0.6%) separately. This is the first report of the effective combined action of oral SOV and TSP in ameliorating the altered mitochondrial enzyme activities during experimental type-1 diabetes. Our novel combined oral administration of SOV and TSP to diabetic rats thus conclusively proves as a possible method to minimize potential vanadate toxicity without compromising its positive effects in the therapy of experimental type-1 diabetes.  相似文献   
12.
Oral administration of vanadate to diabetic animals have been shown to stabilize the glucose homeostasis and restore altered metabolic pathways. However, vanadate exerts these effects at relatively high doses with several toxic effects. Low doses of vanadate are relatively safe but unable to elicit any antidiabetic effects. The present study explored the prospect of using low doses of vanadate with Trigonella foenum graecum, seed powder (TSP), another antidiabetic agent, and to evaluate their antidiabetic effect in diabetic rats. Alloxan diabetic rats were treated with insulin, vanadate, TSP and low doses of vanadate with TSP for three weeks. The effect of these antidiabetic compounds was examined on general physiological parameters, Na+/K+ ATPase activity, membrane lipid peroxidation and membrane fluidity in liver, kidney and heart tissues. Expression of glucose transporter (GLUT4) protein was also examined by immunoblotting method in experimental rat heart after three weeks of diabetes induction. Diabetic rats showed high blood glucose levels. Activity of Na+/K+ ATPase decreased in diabetic liver and heart. However, kidney showed a significant increase in Na+/K+ ATPase activity. Diabetic rats exhibited an increased level of lipid peroxidation and decreased membrane fluidity. GLUT4 distribution was also significantly lowered in heart of alloxan diabetic rats. Treatment of diabetic rats with insulin, TSP, vanadate and a combined therapy of lower dose of vanadate with TSP revived normoglycemia and restored the altered level of Na+/K+ ATPase, lipid peroxidation and membrane fluidity and also induced the redistribution of GLUT4 transporter. TSP treatment alone is partially effective in restoring the above diabetes-induced alterations. Combined therapy of vanadate and TSP was the most effective in normalization of altered membrane linked functions and GLUT4 distribution without any harmful side effect.  相似文献   
13.
Mycobacterium tuberculosis adopts various measures to escape from the hostile environment of the host cells. A low molecular weight protein tyrosine phosphatase (LMWPTPase) MPtpA was found to be active in virulent mycobacterial forms during the phagocytosis process. To ascertain the importance of conserved residues Cys11, Arg17, and Asp126 in the catalytic mechanism of MPtpA, site-directed mutagenesis was performed, namely C11S, R17A, D126A, and D126N. Kinetic characterization of wild-type and the mutant MPtpAs using para-nitrophenyl phosphate revealed the reaction mechanism followed by this LMWPTPase and it is similar to the other PTPases. All the LMWPTPases have a common signature motif, 'C(X)(5)R(S/T)' and an Asp as the general acid residue and the mechanism followed by MPtpA can be aptly attributed to other LMWPTPases as well, considering the similar three-dimensional conformation. We have shown that the mutations caused major changes in the chemical environment surrounding the mutated residues and resulted in the decrease of catalytic activity significantly. Inhibition kinetics was performed with phosphate analogues: sodium molybdate, sodium orthovanadate, and sodium tungstate.  相似文献   
14.
Terbium‐doped gadolinium orthovanadate (GdVO4:Tb3+), orthophosphate monohydrate (GdPO4·H2O:Tb3+) and orthovanadate–phosphate (GdV,PO4:Tb3+) powder phosphors were synthesized using a solution combustion method. X‐Ray diffraction analysis confirmed the formation of crystalline GdVO4, GdPO4·H2O and GdV,PO4. Scanning electron microscopy images showed that the powder was composed of an agglomeration of particles of different shapes, ranging from spherical to oval to wire‐like structures. The chemical elements present were confirmed by energy dispersive spectroscopy, and the stretching mode frequencies were determined by Fourier transform infrared spectroscopy. UV–visible spectroscopy spectra showed a strong absorption band with a maximum at 200 nm assigned to the absorption of VO43? and minor excitation bands assigned to f → f transitions of Tb3+. Four characteristic emission peaks were observed at 491, 546, 588 and 623 nm, and are attributed to 5D47Fj (j = 6, 5, 4 and 3). The photoluminescent prominent green emission peak (5D47F5) was centred at 546 nm. The structure and possible mechanism of light emission from GdV1?xPxO4:% Tb3+ are discussed. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
15.
A new Eu3+‐substituted CsK2Y[VO4]2 glaserite‐type orthovanadate phosphor was synthesized by the conventional high temperature solid‐state reaction method. The phase purity was confirmed by powder X‐ray diffraction study and it reveals that all the compositions crystallize in the hexagonal structure. The morphology and elemental composition were measured by FE‐SEM with Energy Dispersive Analysis Of X Rays (EDAX). The band gap is determined by diffuse reflectance spectra. The self‐activated luminescence of the host and Eu3+‐substituted luminescence behaviours were studied in detail by photoluminescence spectra. The host CsK2Y[VO4]2 shows green emission, whereas the Eu3+‐substituted compositions show red emission. Effect of Eu3+ concentrations on the photoluminescence behaviour were also been studied. The Eu3+‐doped samples show not only several sharp emission lines but also a broad emission band due to presence of the [VO4]3? in the host, which clearly indicates that there is incomplete energy transfer from (VO4) charge transfer band to Eu3+. The life time of the phosphors also been studied. The Commission Internationale de l'Eclairage (CIE) chromaticity colour coordinates were calculated and it is very much closer to the National Television Standard Committee (NTSC) standards. These investigations evidently reveal that the self‐activated and Eu3+‐activated phosphors show a great potential applications as a red phosphor for solid‐state lighting includes white light‐emitting diodes (wLEDs).  相似文献   
16.
Activation of extracellular signal-regulated kinase (ERK) is known to be regulated by cell adhesion, namely "anchorage dependence". Most studies on the anchorage-dependent regulation have focused on the upstream activating components. We previously reported that the focal adhesion protein vinexin beta can induce the anchorage-independent activation of ERK2. We show here that vinexin beta-induced anchorage-independent activation of ERK2 involves prevention of the dephosphorylation of ERK2, but not the promotion of MEK1 or Raf1 activity. Furthermore, knockdown of vinexin beta resulted in a faster dephosphorylation of ERK2 in A549 cells. Moreover, the coexpression of MKP3/rVH6, an ERK2 specific phosphatase, suppressed the anchorage-independent activation of ERK2 induced by vinexin beta. These results suggest that vinexin beta can prevent the dephosphorylation of ERK2 stimulated by cell detachment, leading to the anchorage-independent activation of ERK2. Furthermore, we found that phosphatase activity directed against activated ERK2 was higher in suspended cells than in adherent cells. In addition, orthovanadate efficiently induces anchorage-independent activation of ERK2 without marked activation of MEK1 in NIH3T3 cells. These observations suggest that the anchorage dependence of ERK1/2 activation is regulated not only by upstream kinases, Raf1 and MEK, but also by phosphatases acting against ERK1/2 and that vinexin beta can induce anchorage-independent activation of ERK by preventing the inactivation of ERK1/2.  相似文献   
17.
To determine whether protein tyrosine kinase (PTK) modulates volume-sensitive chloride current (I(Cl.vol)) in human atrial myocytes and to identify the PTKs involved, we studied the effects of broad-spectrum and selective PTK inhibitors and the protein tyrosine phosphatase (PTP) inhibitor orthovanadate (VO(4)(-3)). I(Cl.vol) evoked by hyposmotic bath solution (0.6-times isosmotic, 0.6T) was enhanced by genistein, a broad-spectrum PTK inhibitor, in a concentration-dependent manner (EC(50) = 22.4 microM); 100 microM genistein stimulated I(Cl.vol) by 122.4 +/- 10.6%. The genistein-stimulated current was inhibited by DIDS (4,4'-diisothiocyanostilbene-2,2'-disulfonic acid, 150 microM) and tamoxifen (20 microM), blockers of I(Cl.vol). Moreover, the current augmented by genistein was volume dependent; it was abolished by hyperosmotic shrinkage in 1.4T, and genistein did not activate Cl(-) current in 1T. In contrast to the stimulatory effects of genistein, 100 microM tyrphostin A23 (AG 18) and A25 (AG 82) inhibited I(Cl.vol) by 38.2 +/- 4.9% and 40.9 +/- 3.4%, respectively. The inactive analogs, daidzein and tyrphostin A63 (AG 43), did not alter I(Cl.vol). In addition, the PTP inhibitor VO(4)(-3) (1 mM) reduced I(Cl.vol) by 53.5 +/- 4.5% (IC(50) = 249.6 microM). Pretreatment with VO(4)(-3) antagonized genistein-induced augmentation and A23- or A25-induced suppression of I(Cl.vol). Furthermore, the selective Src-family PTK inhibitor PP2 (5 microM) stimulated I(Cl.vol), mimicking genistein, whereas the selective EGFR (ErbB-1) kinase inhibitor tyrphostin B56 (AG 556, 25 microM) reduced I(Cl.vol), mimicking A23 and A25. The effects of both PP2 and B56 also were substantially antagonized by pretreatment with VO(4)(-3). The results suggest that I(Cl.vol) is regulated in part by the balance between PTK and PTP activity. Regulation is complex, however. Src and EGFR kinases, distinct soluble and receptor-mediated PTK families, have opposing effects on I(Cl.vol), and multiple target proteins are likely to be involved.  相似文献   
18.
N-Myristoyltransferase (NMT) catalyses the transfer of myristate from myristoyl-CoA to the NH2-terminal glycine residue of several proteins and are important in signal transduction. STZ-induced diabetes (an animal model for insulin-dependent diabetes mellitus, IDDM) resulted in a 2-fold increase in rat liver NMT activity as compared with control animals. In obese Zucker (fa/fa) rats (an animal model for non-insulin dependent diabetes mellitus, NIDDM) there was a4.7-fold lower liver particulate NMT activity as compared with the control lean rat livers. Administration of sodium orthovanadate to the diabetic rats normalised liver NMT activity. These results would indicate that the rat liver particulate N-myristoyltransferase activity appears to be inversely proportional to the level of plasma insulin, implicating insulin in the control of N-myristoylation.Abbreviations NMT N-myristoyl-CoA:protein N-myristoyltransferase - IDDM insulin-dependent diabetes mellitus - NIDDM non-insulin-dependent diabetes mellitus - NIP71 71 kDa N-myristoyltransferase inhibitor protein - NAF45 45 kDa N-myristoyltransferase activating factor  相似文献   
19.
In the present study we have demonstrated that orthovanadate at concentrations of 5–10 uM is cytotoxic to proliferating cells including primary cultures and tumour cell lines. However, concentrations of up to 50 uM did not affect the viability of non-proliferating cells. The cytotoxicity appears to be dependent on the vanadium concentration rather than on the oxidation state of vanadium or the vanadium compound. Furthermore, tumour cell lines with different proliferative rates were equally sensitive to orthovanadate cytotoxicity. Although the mechanisms responsible for the cytotoxicity are not known, addition of H2O2 potentiated orthovanadate cytotoxicity suggesting that hydroxyl or vanadium radicals may be involved.In vivo subcutaneous injections of orthovanadate into mice containing MDAY-D2 tumours resulted in the inhibition of tumour growth by 85–100%. These data indicated that orthovanadate at concentrations greater than 5 uM has antineoplastic properties and may be useful as a chemotherapeutic agent.  相似文献   
20.
Momordica charantia Linn., commonly called bitter gourd, is a medicinal plant used in the Ayurvedic system of medicine for treating various diseases including diabetes mellitus. Sodium orthovanadate (SOV) is also well-known insulin mimetic and an antidiabetic compound. Our laboratory has been using reduced doses of SOV along with administration of herbal extracts to alloxan diabetic rats and has established this combination as a good antihyperglycemic agent. The present study was undertaken to investigate the effects of treatment of Momordica fruit extract (MFE) and sodium orthovanadate, separately and in combination, on serum and tissue lipid profile and on the activities of lipogenic enzymes in alloxan induced diabetic rats. The results show that there was a significant (p < 0.01) increase in serum total lipids, triglycerides and total cholesterol levels after 21 days of alloxan diabetes. In the liver and kidney of diabetic rats the levels of total lipids and triglycerides also increased significantly (p < 0.01) while levels of total cholesterol decreased significantly (p < 0.01 and p < 0.05, respectively). The lipogenic enzymes showed decreased activity in the diabetic liver, while in kidney they showed an increased activity. When compared with the controls these changes were significant. The treatment of alloxan diabetic rats with MFE and SOV prevented these alterations and maintained all parameters near control values. Most effective prevention was however observed in a combined treatment of Momordica with a reduced dose of SOV (0.2%). The results suggest that Momordica fruit extract and SOV exhibit hypolipidemic as well as hypoglycemic effect in diabetic rats and their effect is pronounced when administered in combination. (Mol Cell Biochem 268: 111–120, 2005)  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号