首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   149篇
  免费   1篇
  国内免费   4篇
  2022年   1篇
  2021年   4篇
  2020年   3篇
  2019年   1篇
  2018年   1篇
  2017年   2篇
  2016年   1篇
  2015年   4篇
  2014年   6篇
  2013年   3篇
  2011年   4篇
  2010年   5篇
  2009年   5篇
  2008年   7篇
  2007年   9篇
  2006年   8篇
  2005年   13篇
  2004年   5篇
  2003年   6篇
  2002年   8篇
  2001年   3篇
  2000年   4篇
  1999年   5篇
  1998年   2篇
  1997年   2篇
  1996年   4篇
  1995年   1篇
  1994年   3篇
  1993年   4篇
  1992年   4篇
  1991年   4篇
  1990年   4篇
  1989年   1篇
  1988年   3篇
  1986年   1篇
  1985年   2篇
  1984年   4篇
  1982年   1篇
  1981年   1篇
  1980年   1篇
  1979年   3篇
  1970年   1篇
排序方式: 共有154条查询结果,搜索用时 15 毫秒
121.
Spemann organizer is a center of dorsal mesoderm and itself retains the mesoderm character, but it has a stimulatory role for neighboring ectoderm cells in becoming neuroectoderm in gastrula embryos. Goosecoid (Gsc) overexpression in ventral region promotes secondary axis formation including neural tissues, but the role of gsc in neural specification could be indirect. We examined the neural inhibitory and stimulatory roles of gsc in the same cell and neighboring cells contexts. In the animal cap explant system, Gsc overexpression inhibited expression of neural specific genes including foxd4l1.1, zic3, ncam, and neurod. Genome-wide chromatin immunoprecipitation sequencing (ChIP-seq) and promoter analysis of early neural genes of foxd4l1.1 and zic3 were performed to show that the neural inhibitory mode of gsc was direct. Site-directed mutagenesis and serially deleted construct studies of foxd4l1.1 promoter revealed that Gsc directly binds within the foxd4l1.1 promoter to repress its expression. Conjugation assay of animal cap explants was also performed to demonstrate an indirect neural stimulatory role for gsc. The genes for secretory molecules, Chordin and Noggin, were up-regulated in gsc injected cells with the neural fate only achieved in gsc uninjected neighboring cells. These experiments suggested that gsc regulates neuroectoderm formation negatively when expressed in the same cell and positively in neighboring cells via soluble factors. One is a direct suppressive circuit of neural genes in gsc expressing mesoderm cells and the other is an indirect stimulatory circuit for neurogenesis in neighboring ectoderm cells via secreted BMP antagonizers.  相似文献   
122.
The body-plan of vertebrates, while exteriorly essentially symmetric along its medio-lateral plane, displays numerous left-right differences in the disposition and placement of internal organs. Such left-right asymmetries, established during embryogenesis, are controlled by complex epigenetic and genetic cascades that impart laterality information to the different embryo structures and organ primordia. A key and evolutionarily conserved feature of these information cascades among vertebrate embryos is the left-sided transfer of information from the node to the lateral plate mesoderm during early somitogenesis stages. We review here recent evidence concerning the mechanisms that regulate the laterality of such transfer. Furthermore, we propose a model of left-right axis specification that underscores the role of the node as an integrator of laterality information and the evolutionary conservation of the mechanisms that convey such information to and from the node.  相似文献   
123.
Gossypium mustelinum ((AD)4) is one of five disomic species in Gossypium. Three 45S ribosomal DNA (rDNA) loci were detected in (AD)4 with 45S rDNA as probe, and three pairs of brighter signals were detected with genomic DNA (gDNA) of Gossypium D genome species as probes. The size and the location of these brighter signals were the same as those detected with 45S rDNA as probe, and were named GISH-NOR. One of them was super-major, which accounted for the fact that about one-half of its chromosome at metaphase was located at chromosome 3, and other two were minor and located at chromosomes 5 and 9, respectively. All GISH-NORs were located in A sub-genome chromosomes, separate from the other four allopolyploid cotton species. GISH-NOR were detected with D genome species as probe, but not A. The greatly abnormal sizes and sites of (AD)4 NORs or GISH-NORs indicate a possible mechanism for 45S rDNA diversification following (AD)4 speciation. Comparisons of GISH intensities and GISH-NOR production with gDNA probes between A and D genomes show that the better relationship of (AD)4 is with A genome. The shortest two chromosomes of A sub-genome of G. mustelinum were shorter than the longest chromosome of D sub-genome chromosomes. Therefore, the longest 13 chromosomes of tetraploid cotton being classified as A sub-genome, while the shorter 13 chromosomes being classified as D sub-genome in traditional cytogenetic and karyotype analyses may not be entirely correct.  相似文献   
124.
《Developmental cell》2020,52(5):659-672.e3
  1. Download : Download high-res image (159KB)
  2. Download : Download full-size image
  相似文献   
125.
The neuroectodermal tissue close to the midbrain-hindbrain boundary (MHB) is an important secondary organizer in the developing neural tube. This so-called isthmic organizer (IsO) secretes signaling molecules, such as fibroblast growth factors (FGFs), which regulate cellular survival, patterning and proliferation in the midbrain and rhombomere 1 (R1) of the hindbrain. We have previously shown that FGF-receptor 1 (FGFR1) is required for the normal development of this brain region in the mouse embryo. Here, we have compared the gene expression profiles of midbrain-R1 tissues from wild-type embryos and conditional Fgfr1 mutants, in which FGFR1 is inactivated in the midbrain and R1. Loss of Fgfr1 results in the downregulation of several genes expressed close to the midbrain-hindbrain boundary and in the disappearance of gene expression gradients in the midbrain and anterior hindbrain. Our screen identified several previously uncharacterized genes which may participate in the development of midbrain-R1 region. Our results also show altered neurogenesis in the midbrain and R1 of the Fgfr1 mutants. Interestingly, the neuronal progenitors in midbrain and R1 show different responses to the loss of signaling through FGFR1.  相似文献   
126.
127.
Although a conserved mechanism relying on BMP2/4 and Chordin is suggested for animal dorsal–ventral (DV) patterning, this mechanism has not been reported in spiralians, one of the three major clades of bilaterians. Studies on limited spiralian representatives have suggested markedly diverse DV patterning mechanisms, a considerable number of which no longer deploy BMP signaling. Here, we showed that BMP2/4 and Chordin regulate DV patterning in the mollusk Lottia goshimai, which was predicted in spiralians but not previously reported. In the context of the diverse reports in spiralians, it conversely represents a relatively unusual case. We showed that BMP2/4 and Chordin coordinate to mediate signaling from the D-quadrant organizer to induce the DV axis, and Chordin relays the symmetry-breaking information from the organizer. Further investigations on L. goshimai embryos with impaired DV patterning suggested roles of BMP signaling in regulating the behavior of the blastopore and the organization of the nervous system. These findings provide insights into the evolution of animal DV patterning and the unique development mode of spiralians driven by the D-quadrant organizer.  相似文献   
128.
Summary The karyotypes of the rainbow trout (Salmo gairdneri R.) and the brown trout (Salmo trutta L.) were analyzed by means of silver staining and the chromomycin A3/distamycin A/DAPI fluorescence banding technique. The nucleolus organizer regions (NORs) were localized at the secondary constrictions of chromosome no. 14 in S. gairdneri and of chromosome no. 10 in S. trutta. Additional silver positive dots were observed at or close to several centromeres in S. gairdneri. Brilliant chromomycin A3 (CMA3) fluorescence heterochromatin blocks were localized on both sides of the nucleolar constrictions in S. gairdneri. A polymorphic CMA3 positive band was detected close to the NORs of S. trutta. No distamycin A/DAPI intense heterochromatin blocks were detected in the genomes of the two Salmo species investigated.  相似文献   
129.
130.
Nucleolus organizer regions (Nor loci) of a range of Chinese wheat landraces and cultivars (Triticum aestivum L. em Thell.) were analysed using genomic DNA extracted from leaves. Only two allelic variants of the Nor-B1 locus were found on chromosome 1B (Nor-B1a and Nor-B1g), while Nor-B1g was probably introduced from North America in the early 1960s. The even more recent introduction of the rye allele Nor-R1 in the early 1980s was also revealed. Eight allelic variants of the Nor-B2 locus on chromosome 6B (Nor-B2a, b, d, f, h, o, p and s) were identified. A Chinese origin for the a, d, f, o, p and s alkies is evident although the d allele was successfully introduced into Australian wheats in the early 1900s. Nor-B2h and Nor-B2b are again very recent introductions into Chinese wheat breeding programs, the former from CIMMYT wheats and the latter in association with the introduction of the 1RS/1BL translocation from Europe. On the basis of the presence of different combinations of Nor-B1 and Nor-B2 alleles  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号