首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6687篇
  免费   919篇
  国内免费   1690篇
  9296篇
  2024年   52篇
  2023年   161篇
  2022年   159篇
  2021年   226篇
  2020年   306篇
  2019年   327篇
  2018年   372篇
  2017年   346篇
  2016年   325篇
  2015年   408篇
  2014年   404篇
  2013年   541篇
  2012年   331篇
  2011年   363篇
  2010年   242篇
  2009年   376篇
  2008年   336篇
  2007年   369篇
  2006年   365篇
  2005年   338篇
  2004年   243篇
  2003年   256篇
  2002年   223篇
  2001年   196篇
  2000年   157篇
  1999年   171篇
  1998年   131篇
  1997年   125篇
  1996年   112篇
  1995年   136篇
  1994年   127篇
  1993年   113篇
  1992年   127篇
  1991年   105篇
  1990年   98篇
  1989年   66篇
  1988年   72篇
  1987年   63篇
  1986年   57篇
  1985年   73篇
  1984年   71篇
  1983年   28篇
  1982年   59篇
  1981年   34篇
  1980年   45篇
  1979年   21篇
  1978年   9篇
  1977年   13篇
  1976年   5篇
  1973年   5篇
排序方式: 共有9296条查询结果,搜索用时 0 毫秒
21.
The formation of mor humus in an experimental grassland plot, which has been acidified by long-term fertiliser treatment, has been studied by comparing the rates of cellulose, soil organic matter and plant litter decay with those in an adjacent plot with near-neutral pH and mull humus. The decomposition of cellulose filter paper in litter bags of 5 mm, 1-mm and 45-μm mesh size buried at 3 to 4 cm depth the plots was followed by measuring the weight loss and changes in glucose content over a 6 month period. Soil pH was either 5.3 or 4.3. Decomposition of native soil organic matter and plant litter in soil from the same plots were followed using CO2 evolution in laboratory microcosms. Cellulose weight loss at pH 5.3 was greatest from the 5-mm mesh bags and least from the 45-um mesh bags. At pH 4.3 there was little weight loss from bags and no significant differences in weight loss between bags with different sized mesh. There was, however, a reduction in the glucose content of the hydrolysed and derivatised filter paper with time. The decomposition rate of native soil organic matter in the low pH soil was increased to that observed in the less acid soil when the pH of the former was increased from 4.3 to 5.3. The increase in decomposition rate of added plant litter in the more acid soil as a result of CA(OH)2 addition was only 60% of that observed in the soil with pH 5.3. These data support the hypothesis that the absence of soil animals and the restricted microbial decomposition in the acidic soil was responsible for mor humus formation.  相似文献   
22.
H. Quader  H. Fast 《Protoplasma》1990,157(1-3):216-224
Summary The anastomosing ER system of epidermal cells of onion bulb scales is composed of three modifications: lamellar and tubular elements, located in the cell periphery, and long tubular stands located deeper in the cytoplasm. Cytoplasmic acidification of epidermal cells by loading with weak organic acids like acetic or propionic acid causes the decay of the lamellar elements and the disappearance of long tubular strands. Organelle movement is also inhibited. The effects depend on the pH of the incubation medium and on the administered acid concentration, and are characterized by a distinct lag phase of about 7 min. The induced ER changes are transient with adaptation starting after about 50min. Buffer components alone have little influence on the cellular ER organization within a pH-range of 4.0–8.0. However, the pH of the medium strongly affects the time course of the effects as well as recovery after omitting the administered acid. Both modulation and recovery occur more rapidly at neutral or slightly alkaline pH. Actin filaments, which play a major role in ER organization and organelle movement, are not affected by cytosolic acidification.Dedicated to the memory of Professor Oswald Kiermayer  相似文献   
23.
Aluminum geochemistry in peatland waters   总被引:4,自引:4,他引:0  
The chemical speciation of aluminum was examined in surface water samples from Sphagnum peatlands in north-central Minnesota, from peatlands along the Canadian east coast, and from bogs in the Pennine Mountain area of England. In highly organic ([DOC] 50 mg L–1 ), low pH waters, 80–90% of total dissolved Al was complexed with organic matter (OM), while in waters with low DOC ([DOC] 5 mg L–1) 54–86% of total dissolved Al existed as Al+3 or other inorganic Al species. Batch titrations of OM with Al revealed a high Al binding capacity, 1.4–2.8 mol (mg DOC)–1, that generally was unsaturated with Al. Titrations of OM with Al in conjunction with a continuous distribution model were used to determine Al-OM conditional stability constants. Binding capacity (mol Al (mg DOC)–1) and strength (formation constant) increased from pH 3 to 5 but decreased above pH 5 due to formation of AI-hydroxy species including A1(OH)3 (s). The high binding capacity of OM in bog waters facilitates metal mobility, especially in low pH (< 5) wetlands where metal solubility is high and OM concentrations are highest. Results showed that the relative degree of organic matter saturation with metal ions was important in modeling AI speciation in bog waters.  相似文献   
24.
Dissolved organic carbon (DOC) dynamics were examined over five years (1989–1993) in Sycamore Creek, a Sonoran Desert stream, specifically focusing on DOC concentration in surface and hyporheic waters, and rates of export. In 1989 and 1990, the years of lowest stream discharge (0.08 and 0.04 m3 s–1 annual mean of daily discharge, respectively), DOC was high, averaging 7.37 and 6.22 mgC l–1 (weighted annual means). In contrast, from 1991 through 1993, a period of increased flow (1.1, 1.2 and 4.3 m3 s–1), concentration was significantly lower (P<0.001) with annual mean concentrations of 3.54, 3.49 and 3.39 mgC l–1. Concentration exhibited little spatial variation between two sampling stations located 6 km apart along the mainstem or between surface and hyporheic waters. Annual export of DOC from Sycamore Creek varied 100-fold over the five-year period from a mean rate of only 24 kgC d–1 in 1990 to 2100 kgC d–1 in 1993. Ninety percent of DOC was exported by flows greater than 2.8 m3 s–1, and 50% during flows greater than 27 m3 s–1; flows of 2.8 and 24 m3 s–1 occurred only 9 and 1% of the time. The export of organic matter in Sycamore Creek appears to be coupled to El Niño-Southern Oscillation phenomena. The years of highest export, 1991–1993, had El Niño conditions while 1989 and 1990 had medial conditions.  相似文献   
25.
26.
The circumstances that led to the discovery that plants luminesce after they are illuminated are described, as are other discoveries that would not have been possible were it not for the fortuitous association I had with my dear and most admirable friend, W.A. Arnold, to whom this special issue is dedicated.  相似文献   
27.
Homoionic Na-, Ca-, and Al-clays were prepared from the <2 m fractions of Georgia kaolinite and Wyoming bentonite and mixed with sand to give artificial soils with 5, and 25% clay. The artificial soils were inoculated with microbes from a natural soil before incubation. Unlabelled and uniformly13C-labelled (99.9% atom) glucose were incorporated into the artificial soils to study the effects of clay types, exchangeable cations and clay contents on the mineralization of glucose-carbon and glucose-derived organic materials. Chemical transformation of glucose-carbon upon incorporation into microbial products and metabolites, was followed using solid-state13C CP/MAS NMR spectroscopy.There was a significant influence of exchangeable cations on the mineralization of glucose-carbon over a period of 33 days. At 25% clay content, mineralization of glucose-carbon was highest in Ca-soils and lowest in Al-soils. The influence of exchangeable cations on mineralization of glucose-carbon was more pronounced in soils with bentonite clay than those with kaolinite clay. Statistical analysis of data showed no overall effect of clay type on mineralization of glucose-carbon. However, the interactions of clay type with clay content and clay type with clay content and exchangeable cations were highly significant. At 25% clay content, the mineralization of glucose-carbon was significantly lower in Na- and Al-soils with Wyoming bentonite compared with Na- and Al-soils with Georgia kaolinite. For Ca-soils this difference was not significant. Due to the increased osmotic tension induced by the added glucose, mineralization of glucose-carbon was slower in soils with 5% clay than soils with 25% clay.Despite the differences in the chemical and physical characteristics of soils with Ca-, Na- and Al-clays, the chemical composition of organic materials synthesised in these soils were similar in nature. Assuming CP/MAS is quantitative, incorporation of uniformly13C-labelled glucose (99.9% atom) in these soils resulted in distribution of carbon in alkyl (24–25%), O-alkyl (56–63%), carbonyl (11–15%) and small amounts of aromatic and olefinic carbon (2–4%). However, as decomposition proceeded, the chemistry of synthesised material showed some changes with time. In the Ca- and Na-soils, the proportions of alkyl and carbonyl carbon decreased and that of O-alkyl carbon increased with time of incubation. However, the opposite trend was found for the Al-soil.Proton-spin relaxation editing (PSRE) subspectra clearly showed heterogeneity within the microbial products. Subspectra of the slowly-relaxing (long T1(H)) domains were dominated by alkyl carbon in long- and short-chain structures. The signals due to N-alkyl (55 ppm) and carbonyl carbon were also strong in these subspectra. These subspectra were very similar to those obtained for microbial and fungal materials and were probably microbial tissues attached to clay surfaces by polysaccharide extracellular mucilage. Subspectra of fast-relaxing (short T1(H)) domains comprised mostly O-alkyl and carbonyl carbon and were probably microbial metabolites released as neutral and acidic sugars into the extracellular environment, and strongly sorbed by clay surfaces.  相似文献   
28.
Turnover of organic nitrogen in soils and its availability to crops   总被引:4,自引:0,他引:4  
K. Mengel 《Plant and Soil》1996,178(1):83-93
The root development of barley seedlings grown for one week in an aerated nutrient solution was studied in the presence of dissolved organic matter from an aqueous chestnut leaf litter extract. In particular, the different effects of low and high molecular weight fractions (small molecules: molecular weight <1000; large molecules: >10,000) of the leaf litter extract were examined. In the presence of large molecules root growth was inhibited, an irregular root tip morphology was observed, and Ca and Mg concentrations in the shoots were lower than in control plants. These phytotoxic effects were not caused by the formation of an impermeable layer of large molecules on the root surfaces that lower accessibility for nutrient cations as inferred from voltammetric experiments. A germination assay using spruce seeds, however, indicated allelochemical effects of large molecules, which exhibit a higher aromaticity than the small molecules as indicated by spectroscopic characterisation. In the growth experiments with small molecules, no influence on the root development of barley was evident, but an increase of Ca and Mg in the shoots was detected. During these growth experiments, a large amount of the small molecules, mainly simple phenols and amino acids, disappeared from the nutrient solution. The loss of small molecules was most likely the effect of mineralisation.Abbreviations DOC dissolved organic carbon - DOM dissolved organic matter - LLE leaf litter extract - MW molecular weight - HMDE hanging mercury drop electrode  相似文献   
29.
A telescopic method for photographing within 8×8 cm minirhizotrons   总被引:1,自引:0,他引:1  
The volatile organic compounds produced during a sequence of soil incubations under controlled conditions, with either added NH4 +-N or NO3 --N, were collected and identified. The nature and relative amounts of the volatile organic compounds produced by the microorganisms in the soils were remarkably reproducible and consistent.  相似文献   
30.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号