首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1863篇
  免费   136篇
  国内免费   39篇
  2024年   3篇
  2023年   41篇
  2022年   54篇
  2021年   70篇
  2020年   71篇
  2019年   62篇
  2018年   81篇
  2017年   54篇
  2016年   72篇
  2015年   109篇
  2014年   104篇
  2013年   164篇
  2012年   89篇
  2011年   101篇
  2010年   82篇
  2009年   113篇
  2008年   94篇
  2007年   96篇
  2006年   79篇
  2005年   83篇
  2004年   75篇
  2003年   60篇
  2002年   64篇
  2001年   39篇
  2000年   55篇
  1999年   24篇
  1998年   18篇
  1997年   8篇
  1996年   9篇
  1995年   8篇
  1994年   7篇
  1993年   7篇
  1992年   8篇
  1991年   3篇
  1990年   2篇
  1989年   2篇
  1988年   4篇
  1987年   5篇
  1986年   2篇
  1985年   2篇
  1984年   4篇
  1983年   1篇
  1982年   2篇
  1979年   2篇
  1976年   2篇
  1974年   1篇
  1973年   1篇
  1972年   1篇
排序方式: 共有2038条查询结果,搜索用时 31 毫秒
61.
Magnetosomes are membrane-enveloped bacterial organelles containing nano-sized magnetic particles, and function as a cellular magnetic sensor, which assist the cells to navigate and swim along the geomagnetic field. Localized with each magnetosome is a suite of proteins involved in the synthesis, maintenance and functionalization of the organelle, however the detailed molecular organization of the proteins in magnetosomes is unresolved. MamA is one of the most abundant magnetosome-associated proteins and is anchored to the magnetosome vesicles through protein-protein interactions, but the identity of the protein that interacts with MamA is undetermined. In this study, we found that MamA binds to a magnetosome membrane protein Mms6. Two different molecular masses of Mms6, 14.5-kDa and 6.0-kDa, were associated with the magnetosomes. Using affinity chromatography, we identified that the 14.5-kDa Mms6 interacts with MamA, and the interaction was further confirmed by pull-down, immunoprecipitation and size-exclusion chromatography assays. Prior to this, Mms6 was assumed to be strictly involved with biomineralizing magnetite; however, these results suggest that Mms6 has an additional responsibility, binding to MamA.  相似文献   
62.
The tomato Cf‐9 gene encodes a membrane‐anchored glycoprotein that imparts race‐specific resistance against the tomato leaf mould fungus Cladosporium fulvum in response to the avirulence protein Avr9. Although the N‐terminal half of the extracellular leucine‐rich repeat (eLRR) domain of the Cf‐9 protein determines its specificity for Avr9, the C‐terminal half, including its small cytosolic domain, is postulated to be involved in signalling. The cytosolic domain of Cf‐9 carries several residues that are potential sites for ubiquitinylation or phosphorylation, or signals for endocytic uptake. A targeted mutagenesis approach was employed to investigate the roles of these residues and cellular processes in Avr9‐dependent necrosis triggered by Cf‐9. Our results indicate that the membrane‐proximal region of the cytosolic domain of Cf‐9 plays an important role in Cf‐9‐mediated necrosis, and two amino acids within this region, a threonine (T835) and a proline (P838), are particularly important for Cf‐9 function. An alanine mutation of T835 had no effect on Cf‐9 function, but an aspartic acid mutation, which mimics phosphorylation, reduced Cf‐9 function. We therefore postulate that phosphorylation/de‐phosphorylation of T835 could act as a molecular switch to determine whether Cf‐9 is in a primed or inactive state. Yeast two‐hybrid analysis was used to show that the cytosolic domain of Cf‐9 interacts with the cytosolic domain of tomato VAP27. This interaction could be disrupted by an alanine mutation of P838, whereas interaction with CITRX remained unaffected. We therefore postulate that a proline‐induced kink in the membrane‐proximal region of the cytosolic domain of Cf‐9 may be important for interaction with VAP27, which may, in turn, be important for Cf‐9 function.  相似文献   
63.
囊泡运输是真核细胞中物质运输及信息交流的重要形式,Rab蛋白在这个过程中发挥着重要功能.Rab4是Rab蛋白家族的成员之一,参与调控早期内体的分选与内体循环途径.Rab4包括Rab4A、Rab4B和Rab4C 3个亚型.本文主要阐述了Rab4的结构特征、主要的效应蛋白和参与运输的货物蛋白以及影响细胞自噬、葡萄糖摄取、神经调节、心脏功能及肿瘤发生方面的功能.  相似文献   
64.
Golgi phosphoprotein 73 (GP73) has been regarded as a novel serum biomarker for the diagnosis of hepatocellular carcinoma (HCC) in recent years. It has been reported that the upregulation of GP73 may promote the carcinogenesis and metastasis of HCC; however, the mechanisms remain poorly understood. In this study, GP73 correlates positively with matrix metalloproteinase‐2 (MMP‐2) in HCC‐related cells and tissues. Further studies indicate that the knockdown of GP73 blocks MMP‐2 trafficking and secretion, resulting in cell invasion inhibition. Additionally, the knockdown of GP73 induces the accumulation of intracellular MMP‐2, which inhibits the phosphorylation of Src at Y416 and triggers the inhibition of SAPK/JNK and p53‐p21 signalling pathways through a negative feedback loop. Finally, the transactivation of MMP2 was inhibited by the reduction in E2F1. This study reveals that GP73 plays functional roles in the trafficking and equilibrium of epithelial‐mesenchymal transition (EMT)‐related secretory proteins and that GP73 serves as a new potential target for combating the metastasis of HCC.  相似文献   
65.
Anterograde cell surface transport of nascent G protein‐coupled receptors (GPCRs) en route from the endoplasmic reticulum (ER) through the Golgi apparatus represents a crucial checkpoint to control the amount of the receptors at the functional destination and the strength of receptor activation‐elicited cellular responses. However, as compared with extensively studied internalization and recycling processes, the molecular mechanisms of cell surface trafficking of GPCRs are relatively less defined. Here, we will review the current advances in understanding the ER‐Golgi‐cell surface transport of GPCRs and use angiotensin II type 1 receptor as a representative GPCR to discuss emerging roles of receptor‐interacting proteins and specific motifs embedded within the receptors in controlling the forward traffic of GPCRs along the biosynthetic pathway.   相似文献   
66.
Organelle tethering and intercommunication are crucial for proper cell function. We previously described a tether between peroxisomes and the endoplasmic reticulum (ER) that acts in peroxisome population control in the yeast, Saccharomyces cerevisiae. Components of this tether are Pex3p, an integral membrane protein of both peroxisomes and the ER and Inp1p, a connector that links peroxisomes to the ER. Here, we report the analysis of random Inp1p mutants that enabled identification of regions in Inp1p required for the assembly and maintenance of the ER‐peroxisome tether. Interaction analysis between Inp1p mutants and known Inp1p‐binding proteins demonstrated that Pex3p and Inp1p do not constitute the sole components of the ER‐peroxisome tether. Deletion of these Inp1p interactors whose steady‐state localization is outside of ER‐peroxisome tethers affected peroxisome dynamics. Our findings are consistent with the presence of regulatory cues that act on ER‐peroxisome tethers and point to the existence of membrane contact sites between peroxisomes and organelles other than the ER.   相似文献   
67.
68.
Opportunistic viruses are a major problem for immunosuppressed individuals, particularly following organ or stem cell transplantation. Current treatments are non-existent or suffer from problems such as high toxicity or development of resistant strains. We previously published that a trafficking inhibitor that targets a host protein greatly reduces the replication of human cytomegalovirus. This inhibitor was also shown to be moderately effective against polyomaviruses, another family of opportunistic viruses. We have developed a panel of analogues for this inhibitor and have shown that these analogues maintain their high efficacy against HCMV, while substantially lowering the concentration required to inhibit polyomavirus replication. By targeting a host protein these compounds are able to inhibit the replication of two very different viruses. These observations open up the possibility of pan-viral inhibitors for immunosuppressed individuals that are effective against multiple, diverse opportunistic viruses.  相似文献   
69.
70.
GCC88 is a golgin coiled‐coil protein at the trans‐Golgi (TGN) that functions as a tethering factor for the endosome‐derived retrograde transport vesicles. Here, we demonstrate that GCC88 is required for the endosome‐to‐TGN retrograde transport of the cation‐independent mannose 6‐phosphate receptor (CI‐M6PR). The knockout of GCC88 perturbs the retrieval of CI‐M6PR and decreases its cellular level at the steady state, which causes the improper processing of newly synthesized cathepsin‐D, a lysosomal hydrolase dependent on CI‐M6PR for its delivery to lysosomes. At the whole cell level, the knockout of GCC88 reduces the lysosomal proteolytic capacity but does not impair of the efficiency of autophagy within these cells.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号