首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   18189篇
  免费   1828篇
  国内免费   2475篇
  2024年   32篇
  2023年   411篇
  2022年   432篇
  2021年   647篇
  2020年   726篇
  2019年   859篇
  2018年   722篇
  2017年   852篇
  2016年   802篇
  2015年   783篇
  2014年   985篇
  2013年   1445篇
  2012年   800篇
  2011年   1000篇
  2010年   836篇
  2009年   1068篇
  2008年   1151篇
  2007年   1066篇
  2006年   964篇
  2005年   772篇
  2004年   713篇
  2003年   622篇
  2002年   515篇
  2001年   468篇
  2000年   463篇
  1999年   410篇
  1998年   317篇
  1997年   275篇
  1996年   244篇
  1995年   226篇
  1994年   220篇
  1993年   191篇
  1992年   178篇
  1991年   173篇
  1990年   138篇
  1989年   121篇
  1988年   99篇
  1987年   98篇
  1986年   106篇
  1985年   67篇
  1984年   79篇
  1983年   64篇
  1982年   95篇
  1981年   52篇
  1980年   65篇
  1979年   37篇
  1978年   35篇
  1977年   15篇
  1976年   14篇
  1974年   11篇
排序方式: 共有10000条查询结果,搜索用时 46 毫秒
971.
In this study, the impact of dissolved oxygen concentrations oscillations on Corynebacterium glutamicum 2262 ΔldhA growth was studied experimentally and modeled. Aiming at this, a dedicated two-compartment scale down set-up composed of two interconnected aerobic/anaerobic stirred tank bioreactors was used. The mean residence time of bacteria in each compartment was modified by adapting circulation rates and culture volumes in each bioreactor and the resulting temporal ratio of aeration was calculated. The five growth kinetics were then modeled using an original kinetic model coupling Monod growth modeling and the Residence Time Distributions. Our study showed that the microbial growth rate and macroscopic yields were clearly linked to the temporal ratio of aeration, allowing the definition of simple but robust law for process scale-up purpose. It was also revealed that the model proposed precisely agreed with the experimental growth data, whatever the fractions of aeration time imposed experimentally.  相似文献   
972.
973.
Litterfall dynamics (production, seasonality and nutrient composition) are key factors influencing nutrient cycling. Leaf litter characteristics are modified by species composition, site conditions and water availability. However, significant evidence on how large‐scale, global circulation patterns affect ecophysiological processes at tree and ecosystem level remains scarce due to the difficulty in separating the combined influence of different factors on local climate and tree phenology. To fill this gap, we studied links between leaf litter dynamics with climate and other forest processes, such as tree‐ring width (TRW) and intrinsic water‐use efficiency (iWUE) in two mixtures of Scots pine (Pinus sylvestris L.) and European beech (Fagus sylvatica L.) in the south‐western Pyrenees. Temporal series (18 years) of litterfall production and elemental chemical composition were decomposed following the ensemble empirical mode decomposition method and relationships with local climate, large‐scale climatic indices, TRW and Scots pine's iWUE were assessed. Temporal trends in N:P ratios indicated increasing P limitation of soil microbes, thus affecting nutrient availability, as the ecological succession from a pine‐dominated to a beech‐dominated forest took place. A significant influence of large‐scale patterns on tree‐level ecophysiology was explained through the impact of the North Atlantic Oscillation (NAO) and El Niño–Southern Oscillation (ENSO) on water availability. Positive NAO and negative ENSO were related to dry conditions and, consequently, to early needle shedding and increased N:P ratio of both species. Autumn storm activity appears to be related to premature leaf abscission of European beech. Significant cascading effects from large‐scale patterns on local weather influenced pine TRW and iWUE. These variables also responded to leaf stoichiometry fallen 3 years prior to tree‐ring formation. Our results provide evidence of the cascading effect that variability in global climate circulation patterns can have on ecophysiological processes and stand dynamics in mixed forests.  相似文献   
974.
Understanding the effects of global change in terrestrial communities requires an understanding of how limiting resources interact with plant traits to affect productivity. Here, we focus on nitrogen and ask whether plant community nitrogen uptake rate is determined (a) by nitrogen availability alone or (b) by the product of nitrogen availability and fine‐root mass. Surprisingly, this is not empirically resolved. We performed controlled microcosm experiments and reanalyzed published pot experiments and field data to determine the relationship between community‐level nitrogen uptake rate, nitrogen availability, and fine‐root mass for 46 unique combinations of species, nitrogen levels, and growing conditions. We found that plant community nitrogen uptake rate was unaffected by fine‐root mass in 63% of cases and saturated with fine‐root mass in 29% of cases (92% in total). In contrast, plant community nitrogen uptake rate was clearly affected by nitrogen availability. The results support the idea that although plants may over‐proliferate fine roots for individual‐level competition, it comes without an increase in community‐level nitrogen uptake. The results have implications for the mechanisms included in coupled carbon‐nitrogen terrestrial biosphere models (CN‐TBMs) and are consistent with CN‐TBMs that operate above the individual scale and omit fine‐root mass in equations of nitrogen uptake rate but inconsistent with the majority of CN‐TBMs, which operate above the individual scale and include fine‐root mass in equations of nitrogen uptake rate. For the much smaller number of CN‐TBMs that explicitly model individual‐based belowground competition for nitrogen, the results suggest that the relative (not absolute) fine‐root mass of competing individuals should be included in the equations that determine individual‐level nitrogen uptake rates. By providing empirical data to support the assumptions used in CN‐TBMs, we put their global climate change predictions on firmer ground.  相似文献   
975.
Animals must balance a series of costs and benefits while trying to maximize their fitness. For example, an individual may need to choose how much energy to allocate to reproduction versus growth, or how much time to spend on vigilance versus foraging. Their decisions depend on complex interactions between environmental conditions, behavioral plasticity, reproductive biology, and energetic demands. As animals respond to novel environmental conditions caused by climate change, the optimal decisions may shift. Stochastic dynamic programming provides a flexible modeling framework with which to explore these trade‐offs, but this method has not yet been used to study possible changes in optimal trade‐offs caused by climate change. We created a stochastic dynamic programming model capturing trade‐off decisions required by an individual adult female polar bear (Ursus maritimus) as well as the fitness consequences of her decisions. We predicted optimal foraging decisions throughout her lifetime as well as the energetic thresholds below which it is optimal for her to abandon a reproductive attempt. To explore the effects of climate change, we shortened the spring feeding period by up to 3 weeks, which led to predictions of riskier foraging behavior and higher reproductive thresholds. The resulting changes in fitness may be interpreted as a best‐case scenario, where bears adapt instantaneously and optimally to new environmental conditions. If the spring feeding period was reduced by 1 week, her expected fitness declined by 15%, and if reduced by 3 weeks, expected fitness declined by 68%. This demonstrates an effective way to explore a species' optimal response to a changing landscape of costs and benefits and highlights the fact that small annual effects can result in large cumulative changes in expected lifetime fitness.  相似文献   
976.
Evidence suggests that global maize yield declines with a warming climate, particularly with extreme heat events. However, the degree to which important maize processes such as biomass growth rate, growing season length (GSL) and grain formation are impacted by an increase in temperature is uncertain. Such knowledge is necessary to understand yield responses and develop crop adaptation strategies under warmer climate. Here crop models, satellite observations, survey, and field data were integrated to investigate how high temperature stress influences maize yield in the U.S. Midwest. We showed that both observational evidence and crop model ensemble mean (MEM) suggests the nonlinear sensitivity in yield was driven by the intensified sensitivity of harvest index (HI), but MEM underestimated the warming effects through HI and overstated the effects through GSL. Further analysis showed that the intensified sensitivity in HI mainly results from a greater sensitivity of yield to high temperature stress during the grain filling period, which explained more than half of the yield reduction. When warming effects were decomposed into direct heat stress and indirect water stress (WS), observational data suggest that yield is more reduced by direct heat stress (?4.6 ± 1.0%/°C) than by WS (?1.7 ± 0.65%/°C), whereas MEM gives opposite results. This discrepancy implies that yield reduction by heat stress is underestimated, whereas the yield benefit of increasing atmospheric CO2 might be overestimated in crop models, because elevated CO2 brings yield benefit through water conservation effect but produces limited benefit over heat stress. Our analysis through integrating data and crop models suggests that future adaptation strategies should be targeted at the heat stress during grain formation and changes in agricultural management need to be better accounted for to adequately estimate the effects of heat stress.  相似文献   
977.
Increasing drought and extreme rainfall are major threats to maize production in the United States. However, compared to drought impact, the impact of excessive rainfall on crop yield remains unresolved. Here, we present observational evidence from crop yield and insurance data that excessive rainfall can reduce maize yield up to ?34% (?17 ± 3% on average) in the United States relative to the expected yield from the long‐term trend, comparable to the up to ?37% loss by extreme drought (?32 ± 2% on average) from 1981 to 2016. Drought consistently decreases maize yield due to water deficiency and concurrent heat, with greater yield loss for rainfed maize in wetter areas. Excessive rainfall can have either negative or positive impact on crop yield, and its sign varies regionally. Excessive rainfall decreases maize yield significantly in cooler areas in conjunction with poorly drained soils, and such yield loss gets exacerbated under the condition of high preseason soil water storage. Current process‐based crop models cannot capture the yield loss from excessive rainfall and overestimate yield under wet conditions. Our results highlight the need for improved understanding and modeling of the excessive rainfall impact on crop yield.  相似文献   
978.
979.
980.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号