首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2066篇
  免费   172篇
  国内免费   411篇
  2024年   7篇
  2023年   64篇
  2022年   91篇
  2021年   81篇
  2020年   109篇
  2019年   121篇
  2018年   108篇
  2017年   112篇
  2016年   144篇
  2015年   96篇
  2014年   114篇
  2013年   177篇
  2012年   123篇
  2011年   140篇
  2010年   105篇
  2009年   139篇
  2008年   137篇
  2007年   117篇
  2006年   94篇
  2005年   96篇
  2004年   77篇
  2003年   56篇
  2002年   50篇
  2001年   53篇
  2000年   32篇
  1999年   25篇
  1998年   28篇
  1997年   17篇
  1996年   17篇
  1995年   17篇
  1994年   13篇
  1993年   18篇
  1992年   11篇
  1991年   14篇
  1990年   5篇
  1989年   4篇
  1988年   4篇
  1987年   2篇
  1986年   5篇
  1985年   6篇
  1984年   1篇
  1983年   4篇
  1982年   8篇
  1981年   2篇
  1980年   2篇
  1979年   2篇
  1976年   1篇
排序方式: 共有2649条查询结果,搜索用时 343 毫秒
51.
An innovative high-throughput medium development method based on media blending was successfully used to improve the performance of a Chinese hamster ovary fed-batch medium in shaking 96-deepwell plates. Starting from a proprietary chemically-defined medium, 16 formulations testing 43 of 47 components at 3 different levels were designed. Media blending was performed following a custom-made mixture design of experiments considering binary blends, resulting in 376 different blends that were tested during both cell expansion and fed-batch production phases in one single experiment. Three approaches were chosen to provide the best output of the large amount of data obtained. A simple ranking of conditions was first used as a quick approach to select new formulations with promising features. Then, prediction of the best mixes was done to maximize both growth and titer using the Design Expert software. Finally, a multivariate analysis enabled identification of individual potential critical components for further optimization. Applying this high-throughput method on a fed-batch, rather than on a simple batch, process opens new perspectives for medium and feed development that enables identification of an optimized process in a short time frame.  相似文献   
52.
53.
54.
Fungi belong to the large kingdom of lower eukaryotic organisms encompassing yeasts along with filamentous and dimorphic members. Microbial P450 enzymes have contributed to exploration of and adaptation to diverse ecological niches such as conversion of lipophilic compounds to more hydrophilic derivatives or degradation of a vast array of environmental toxicants. To better understand diversification of the catalytic behavior of fungal P450s, detailed insight into the molecular machinery steering oxidative attack on the distinctly structured endogenous and xenobiotic substrates is of preeminent interest. Based on a general, CYP102A1-related template the bulk of predicted substrate/inhibitor-binding determinants were shown to cluster near the distal heme face within the six known substrate recognition sites (SRSs) made up by the α-helical B′/F/G/I tetrad, the B′–C interhelical loop and strands of the β6-sheet, population density being highest in the structurally flexible SRS-1 and SRS-4 domains, showing a low degree of conservation. Reactivity toward ligands favorably coincides with the lipophilicity/hydrophilicity profile and bulkiness of critical amino acids acting as selective filters. Some decisive elements may also serve in maintenance of catalytic competence via their action as gatekeepers directing substrate access/positioning or stabilizers of the heme environment enabling dioxygen activation. Non-SRS residues seem to control spin state equilibria and attract redox partners by electrostatic forces. Of note, the inhibitory potency of azole-type fungicides is likely to arise from perturbation of the complex interplay of the mechanistic principles addressed above. Knowledge-supported exploitation of the topological data will be helpful in the manufacture of commodity/specialty chemicals as well as therapeutic agents. Also, engineered fungal P450s may be used to improve pollutant-specific bioremediation of contaminated soils.  相似文献   
55.
Alzheimer's disease is one of the most common causes of dementia. It is believed that the aggregation of short Aβ -peptides to form oligomeric and protofibrillar amyloid assemblies plays a central role for disease-relevant neurotoxicity. In recent years, passive immunotherapy has been introduced as a potential treatment strategy with anti-amyloid antibodies binding to Aβ -amyloids and inducing their subsequent degradation by the immune system. Although so far mostly unsuccessful in clinical studies, the high-dosed application of the monoclonal antibody Aducanumab has shown therapeutic potential that might be attributed to its much greater affinity to Aβ -aggregates vs monomeric Aβ -peptides. In order to better understand how Aducanumab interacts with aggregated Aβ -forms compared to monomers, we have generated structural model complexes based on the known structure of Aducanumab in complex with an Aβ2 − 7 -eptitope. Structural models of Aducanumab bound to full-sequence Aβ1 − 40 -monomers, oligomers, protofilaments and mature fibrils were generated and investigated using extensive molecular dynamics simulations to characterize the flexibility and possible additional interactions. Indeed, an aggregate-specific N-terminal binding motif was found in case of Aducanumab binding to oligomers, protofilaments and fibrils that is located next to but not overlapping with the epitope binding site found in the crystal structure with Aβ2 − 7 . Analysis of binding energetics indicates that this motif binds weaker than the epitope but likely contributes to Aducanumab's preference for aggregated Aβ -species. The predicted aggregate-specific binding motif could potentially serve as a basis to reengineer Aducanumab for further enhanced preference to bind Aβ -aggregates vs monomers.  相似文献   
56.
The improvement of cell specific productivities for the formation of therapeutic proteins is an important step towards intensified production processes. Among others, the induction of the desired production phenotype via proper media additives is a feasible solution provided that said compounds adequately trigger metabolic and regulatory programs inside the cells. In this study, S-(5′-adenosyl)- l -methionine (SAM) and 5′-deoxy-5′-(methylthio)adenosine (MTA) were found to stimulate cell specific productivities up to approx. 50% while keeping viable cell densities transiently high and partially arresting the cell cycle in an anti-IL-8-producing CHO-DP12 cell line. Noteworthy, MTA turned out to be the chemical degradation product of the methyl group donor SAM and is consumed by the cells.  相似文献   
57.
The development of increasingly popular multiobjective metaheuristics has allowed bioinformaticians to deal with optimization problems in computational biology where multiple objective functions must be taken into account. One of the most relevant research topics that can benefit from these techniques is phylogenetic inference. Throughout the years, different researchers have proposed their own view about the reconstruction of ancestral evolutionary relationships among species. As a result, biologists often report different phylogenetic trees from a same dataset when considering distinct optimality principles. In this work, we detail a multiobjective swarm intelligence approach based on the novel Artificial Bee Colony algorithm for inferring phylogenies. The aim of this paper is to propose a complementary view of phylogenetics according to the maximum parsimony and maximum likelihood criteria, in order to generate a set of phylogenetic trees that represent a compromise between these principles. Experimental results on a variety of nucleotide data sets and statistical studies highlight the relevance of the proposal with regard to other multiobjective algorithms and state-of-the-art biological methods.  相似文献   
58.
Abstract

A new Monte Carlo sampling scheme, namely the Modified Valley Restrained Monte Carlo procedure, is used to obtain the global energy minimum conformations for polypeptides, such as Met-enkephalin and Melittin. For each peptide, we found close agreement with previous results from both theoretical and experimental studies. The simple idea for controlling the step size according to the Valley Function, provides useful suggestions in searching the global energy minimum structures, and furthermore helps solve the multiple minima problem.  相似文献   
59.
An accurate solvation model is essential for computer modeling of protein folding and other biomolecular self-assembly processes. Compared to explicit solvent models, implicit solvent models, such as the Poisson-Boltzmann (PB) with solvent accessible surface area model (PB/SA), offer a much faster speed—the most compelling reason for the popularity of these implicit solvent models. Since these implicit solvent models typically use empirical parameters, such as atomic radii and the surface tensions, an optimal fit of these parameters is crucial for the final accuracy of properties such as solvation free energy and folding free energy. In this paper, we proposed a combined approach, namely SD/GA, which takes the advantage of both local optimization with the steepest descent (SD), and global optimization with the genetic algorithm (GA), for parameters optimization in multi-dimensional space. The SD/GA method is then applied to the optimization of solvation parameters in the non-polar cavity term of the PB/SA model. The results show that the newly optimized parameters from SD/GA not only increase the accuracy in the solvation free energies for ~200 organic molecules, but also significantly improve the free energy landscape of a β-hairpin folding. The current SD/GA method can be readily applied to other multi-dimensional parameter space optimization as well.  相似文献   
60.
In order to build a complete potential model to perform classical molecular dynamic simulations of liquid HF, a new optimization method is proposed to obtain transferable parameters for charge equilibration method on the basis of ab initio reference data. The optimized parameters (the electronegativity χ and the Slater orbital exponent ζ for H and F atoms) appear to be able to reproduce the variations of the electrostatic potential calculated from an ab initio method in a liquid phase of HF molecules for different thermodynamic conditions. It is concluded that the proposed method is general, precise and efficient to obtain transferable and realistic parameters.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号