首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2066篇
  免费   172篇
  国内免费   411篇
  2024年   7篇
  2023年   64篇
  2022年   91篇
  2021年   81篇
  2020年   109篇
  2019年   121篇
  2018年   108篇
  2017年   112篇
  2016年   144篇
  2015年   96篇
  2014年   114篇
  2013年   177篇
  2012年   123篇
  2011年   140篇
  2010年   105篇
  2009年   139篇
  2008年   137篇
  2007年   117篇
  2006年   94篇
  2005年   96篇
  2004年   77篇
  2003年   56篇
  2002年   50篇
  2001年   53篇
  2000年   32篇
  1999年   25篇
  1998年   28篇
  1997年   17篇
  1996年   17篇
  1995年   17篇
  1994年   13篇
  1993年   18篇
  1992年   11篇
  1991年   14篇
  1990年   5篇
  1989年   4篇
  1988年   4篇
  1987年   2篇
  1986年   5篇
  1985年   6篇
  1984年   1篇
  1983年   4篇
  1982年   8篇
  1981年   2篇
  1980年   2篇
  1979年   2篇
  1976年   1篇
排序方式: 共有2649条查询结果,搜索用时 375 毫秒
31.
Purification of horse-liver polyoi dehydrogenase (PDH) on DE52 anion-exchange cellulose reveals the presence of three fractions with enzyme activity. These appear in the breakthrough volume (PDH-3) and the salt gradient (PDH-1, -2) respectively. The major band of activity (< 90%) is found in the PDH-2 fraction. A reexamination of sheep-liver polyol dehydrogenase also reveals the presence of three bands of activity, with the dominant fraction (PDH-3) corresponding to the preparation described by Smith (Biochem. J., 83, 135–144, (1962))3. The interaction between horse-liver (and sheep-liver) PDH and Blue Sepharose CL-6B is found to be endothermic. This property is utilized in the final purification step. Horse-liver PDH-2 has a molecular/subunit weight of 85, 000/28, 000, a Stokes' radius of 3.8 nm, and an isoelectric point of 7.4.  相似文献   
32.
33.
PurposeWe investigated the feasibility of robust optimization for volumetric modulated arc therapy (VMAT) stereotactic body radiation therapy (SBRT) for liver cancer in comparison with planning target volume (PTV)-based optimized plans. Treatment plan quality, robustness, complexity, and accuracy of dose delivery were assessed.MethodsTen liver cancer patients were selected for this study. PTV-based optimized plans with an 8-mm PTV margin and robust optimized plans with an 8-mm setup uncertainty were generated. Plan perturbed doses were evaluated using a setup error of 8 mm in all directions from the isocenter. The dosimetric comparison parameters were clinical target volume (CTV) doses (D98%, D50%, and D2%), liver doses, and monitor unit (MU). Plan complexity was evaluated using the modulation complexity score for VMAT (MCSv).ResultsThere was no significant difference between the two optimizations with respect to CTV doses and MUs. Robust optimized plans had a higher liver dose than did PTV-based optimized plans. Plan perturbed dose evaluations showed that doses to the CTV for the robust optimized plans had small variations. Robust optimized plans were less complex than PTV-based optimized plans. Robust optimized plans had statistically significant fewer leaf position errors than did PTV-based optimized plans.ConclusionsComparison of treatment plan quality, robustness, and plan complexity of both optimizations showed that robust optimization could be feasibile for VMAT of liver cancer.  相似文献   
34.
China's high‐speed economic development and reliance on overconsumption of natural resources have led to serious environmental pollution. Environmental taxation is seen as an effective economic tool to help mitigate air pollution. In order to assess the effects of different scenarios of environmental taxation policies, we propose a frontier‐based environmentally extended input–output optimization model with explicit emission abatement sectors to reflect the inputs and benefits of abatement. Frontier analysis ensures policy scenarios are assessed under the same technical efficiency benchmark, while input–output analysis depicts the wide range of economic transactions among sectors of an economy. Four scenarios are considered in this study, which are increasing specific tax rates of SO2, NOx, and soot and dust separately and increasing all three tax rates simultaneously. Our estimation results show that: raising tax rates of SO2, NOx, and soot and dust simultaneously would have the highest emission reduction effects, with the SO2 tax rate making the greatest contribution to emission reduction. Raising the soot and dust tax rate is the most environmentally friendly strategy due to its highest abatement to welfare through avoided health costs. The combination of frontier analysis and input–output analysis provides policy makers a comprehensive and sectoral approach to assess costs and benefits of environmental taxation.  相似文献   
35.
Abstract

L-glutaminase from bacterial sources has been proven to be effective and economical agents in cancer therapy, food industry and high-value chemicals like threonine. In the present study, a newly isolated bacterial strain was potentially producing extracellular L-glutaminase, it identified as Bacillus subtilis OHEM11 (MK389501) using the 16S rRNA gene. L-glutaminase production optimized and the optimum factors for production under submerged fermentation were at pH 6.5–7.0 and 35?°C after 28?hr using rhamnose and glutamine as carbon and nitrogen sources, respectively, while bagasse was the best inducer for the production under solid-state fermentation. Ethanol precipitation and ion-exchange chromatography using QFF are the purification steps. L-glutaminase was purified to 2-fold with specific activity 89.78?U/mg and its molecular weight about 54.8?kDa with the alkaline property of the enzyme makes it clear having carcinostatic property; maximum enzyme activity at pH 8.2 and 40?°C and retained about 90% activity for 1?hr. The cytotoxicity effect of L-glutaminase indicated a significant safety on Vero cells with high anticancer activity against NFS-60, HepG-2, and MCF-7 cancer cell lines. The outcomes demonstrated that L-glutaminase could be applied in many biotechnological applications such as pharmaceutical and food processing.  相似文献   
36.
Abstract

Several factors may affect erythropoietin (EPO) sugar structures including designing cell culture procedure, pH, concentration of additives, dissolved oxygen, and other physicochemical parameters. In this study, we investigated the influence of changes in effective parameters and compounds on the growth rate of Chinese hamster ovary cell (CHO) cells producing recombinant EPO. Cell culture was performed at different temperature, buffering conditions, and varied concentrations of additives such as pyruvic acid, insulin, GlutaMAX, and sodium butyrate. Results indicated that the optimal temperature and pH were 37?°C and 7.2, respectively. Also, optimal concentrations for pyruvic acid, butyrate, glutamate, and insulin were obtained to be 20?mM, 1?mM, 2?mM, and 40?μg/mL, respectively. Then, cell culture was performed in microcarrier-coated spinner flasks under the optimized condition. The results showed recombinant human EPO (rhEPO) production with adequate purity. Optimization of physicochemical conditions and culture media are important factors to improve the quantity and quality of protein products. This study showed that cell growth and recombinant EPO protein production significantly increased under the optimized conditions. The results of this research can also be used in scale-up to increase the efficiency of EPO production.

Abbreviations: EPO: erythropoietin; CHO cell: Chinese hamster ovary cell; rhEPO: recombinant human EPO; DMEM: modified eagle’s medium; FBS: fetal bovine serum; SDS-PAGE: sodium dodecyl sulfate–polyacrylamide gel electrophoresis; IGF-1: insulin-like growth factor 1  相似文献   
37.
Tissue engineering is a promising option for cartilage repair. However, several hurdles still need to be overcome to develop functional tissue constructs suitable for implantation. One of the most common challenges is the general low capacity of chondrocytes to synthesize cartilage-specific extracellular matrix (ECM). While different approaches have been explored to improve the biosynthetic response of chondrocytes, several studies have demonstrated that the nutritional environment (e.g., glucose concentration and media volume) can have a profound effect on ECM synthesis. Thus, the purpose of this study was to optimize the formulation of cell culture media to upregulate the accumulation of cartilaginous ECM constituents (i.e., proteoglycans and collagen) by chondrocytes in 3D culture. Using response surface methodology, four different media factors (basal media, media volume, glucose, and glutamine) were first screened to determine optimal media formulations. Constructs were then cultured under candidate optimal media formulations for 4 weeks and analyzed for their biochemical and structural properties. Interestingly, the maximal accumulation of proteoglycans and collagen appeared to be elicited by different media formulations. Most notably, proteoglycan accumulation was favored by high volume, low glucose-containing DMEM/F12 (1:1) media whereas collagen accumulation was favored by high volume, high glucose-containing F12 media. While high glutamine-containing media elicited increased DNA content, glutamine concentration had no apparent effect on ECM accumulation. Therefore, optimizing the nutritional environment during chondrocyte culture appears to be a promising, straight-forward approach to improve cartilaginous tissue formation. Future work will investigate the combined effects of the nutritional environment and external stimuli.  相似文献   
38.
短杆菌素是一种广谱抗菌肽,对细菌和真菌均有较好的抑制作用,具有潜在的抗生素替代价值。通过对侧孢短芽孢杆菌fmb70进行紫外诱变、亚硝基胍诱变、常压室温等离子体诱变,获得3株短杆菌素产量提高的诱变菌株。随后以诱变菌株为亲本进行两轮基因组改组,获得融合子F2-24,其短杆菌素产量为(340.5±16.35) μg/mL,是野生菌株fmb70短杆菌素产量的1.92倍。融合子传代5代后,该菌株短杆菌素产量无明显差异,说明菌株稳定性良好。最后对该菌株产短杆菌素的培养基和发酵条件进行优化,优化后的培养基为:4%蔗糖、2%牛肉膏、0.5%氯化镁,发酵温度30℃、培养24 h、培养基初始pH6.0。优化后的短杆菌素产量可达(442.45±9.58)μg/mL,是初始培养条件的2.50倍。  相似文献   
39.
PurposeTo predict the impact of optimization parameter changes on dosimetric plan quality criteria in multi-criteria optimized volumetric-modulated-arc therapy (VMAT) planning prior to optimization using machine learning (ML).MethodsA data base comprising a total of 21,266 VMAT treatment plans for 44 cranial and 18 spinal patient geometries was generated. The underlying optimization algorithm is governed by three highly composite parameters which model a combination of important aspects of the solution. Patient geometries were parametrized via volume- and shape properties of the voxel objects and overlap-volume histograms (OVH) of the planning-target-volume (PTV) and a relevant organ-at-risk (OAR). The impact of changes in one of the three optimization parameters on the maximally achievable value range of five dosimetric properties of the resulting dose distributions was studied. To predict the extent of this impact based on patient geometry, treatment site, and current parameter settings prior to optimization, three different ML-models were trained and tested. Precision-recall curves, as well as the area-under-curve (AUC) of the resulting receiver-operator-characteristic (ROC) curves were analyzed for model assessment.ResultsSuccessful identification of parameter regions resulting in a high variability of dosimetric plan properties depended on the choice of geometry features, the treatment indication and the plan property under investigation. AUC values between 0.82 and 0.99 could be achieved. The best average-precision (AP) values obtained from the corresponding precision/recall curves ranged from 0.71 to 0.99.ConclusionsMachine learning models trained on a database of pre-optimized treatment plans can help finding relevant optimization parameter ranges prior to optimization.  相似文献   
40.
PurposeThe purpose of this work was to present a new single-arc mixed photon (6&18MV) VMAT (SAMP) optimization framework that concurrently optimizes for two photon energies with corresponding partial arc lengths.Methods and materialsOwing to simultaneous optimization of energy dependent intensity maps and corresponding arc locations, the proposed model poses nonlinearity. Unique relaxation constraints based on McCormick approximations were introduced for linearization. Energy dependent intensity maps were then decomposed to generate apertures. Feasibility of the proposed framework was tested on a sample of ten prostate cancer cases with lateral separation ranging from 34 cm (case no.1) to 52 cm (case no.6). The SAMP plans were compared against single energy (6MV) VMAT (SE) plans through dose volume histograms (DVHs) and radiobiological parameters including normal tissue complication probability (NTCP) and equivalent uniform dose (EUD).ResultsThe contribution of higher energy photon beam optimized by the algorithm demonstrated an increase for cases with a lateral separation >40 cm. SAMP–VMAT notably improved bladder and rectum sparing in large size cases. Compared to single energy, SAMP–VMAT plans reduced bladder and rectum NTCP in cases with large lateral separation. With the exception of one case, SAMP–VMAT either improved or maintained femoral heads compared to SE–VMAT. SAMP–VMAT reduced the nontarget tissue integral dose in all ten cases.ConclusionsA single-arc VMAT optimization framework comprising mixed photon energy partial arcs was presented. Overall results underline the feasibility and potential of the proposed approach for improving OAR sparing in large size patients without compromising the target homogeneity and coverage.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号