首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5199篇
  免费   522篇
  国内免费   374篇
  2024年   9篇
  2023年   124篇
  2022年   98篇
  2021年   156篇
  2020年   216篇
  2019年   301篇
  2018年   236篇
  2017年   224篇
  2016年   215篇
  2015年   188篇
  2014年   300篇
  2013年   394篇
  2012年   182篇
  2011年   257篇
  2010年   210篇
  2009年   237篇
  2008年   279篇
  2007年   263篇
  2006年   273篇
  2005年   221篇
  2004年   213篇
  2003年   193篇
  2002年   160篇
  2001年   124篇
  2000年   97篇
  1999年   96篇
  1998年   105篇
  1997年   80篇
  1996年   67篇
  1995年   69篇
  1994年   69篇
  1993年   49篇
  1992年   65篇
  1991年   34篇
  1990年   24篇
  1989年   26篇
  1988年   25篇
  1987年   27篇
  1986年   26篇
  1985年   23篇
  1984年   15篇
  1983年   12篇
  1982年   19篇
  1981年   10篇
  1980年   17篇
  1979年   13篇
  1978年   12篇
  1977年   10篇
  1976年   8篇
  1975年   8篇
排序方式: 共有6095条查询结果,搜索用时 31 毫秒
881.
A chronology of reactor design from laboratory scale to pilot scale for the bioconversion of wheat straw to animal feed is presented. The engineering criteria considered at each stage of development are discussed. Designs were executed at each stage and their performance was compared based on engineering and bioconversion parameters. Illustrative detailed analyses of data obtained from performance evaluation experiments from selected designs are provided. Schematics diagrams of the different generations of reactor designs are also presented.  相似文献   
882.
Nanda V  Schmiedekamp A 《Proteins》2008,70(2):489-497
Proteins fold and maintain structure through the collective contributions of a large number of weak, noncovalent interactions. The hydrogen bond is one important category of forces that acts on very short distances. As our knowledge of protein structure continues to expand, we are beginning to appreciate the role that weak carbon-donor hydrogen bonds play in structure and function. One property that differentiates hydrogen bonds from other packing forces is propensity for forming a linear donor-hydrogen-acceptor orientation. To ascertain if carbon-donor hydrogen bonds are able to direct acceptor linearity, we surveyed the geometry of interactions specifically involving aromatic sidechain ring carbons in a data set of high resolution protein structures. We found that while donor-acceptor distances for most carbon donor hydrogen bonds were tighter than expected for van der Waals packing, only the carbons of histidine showed a significant bias for linear geometry. By categorizing histidines in the data set into charged and neutral sidechains, we found only the charged subset of histidines participated in linear interactions. B3LYP/6-31G**++ level optimizations of imidazole and indole-water interactions at various fixed angles demonstrates a clear orientation dependence of hydrogen bonding capacity for both charged and neutral sidechains. We suggest that while all aromatic carbons can participate in hydrogen bonding, only charged histidines are able to overcome protein packing forces and enforce linear interactions. The implications for protein modeling and design are discussed.  相似文献   
883.
dUTP pyrophosphatase, a preventive DNA repair enzyme, contributes to maintain the appropriate cellular dUTP/dTTP ratio by catalyzing dUTP hydrolysis. dUTPase is essential for viability in bacteria and eukaryotes alike. Identification of species-specific antagonists of bacterial dUTPases is expected to contribute to the development of novel antimicrobial agents. As a first general step, design of dUTPase inhibitors should be based on modifications of the substrate dUTP phosphate chain, as modifications in either base or sugar moieties strongly impair ligand binding. Based on structural differences between bacterial and human dUTPases, derivatization of dUTP-analogous compounds will be required as a second step to invoke species-specific character. Studies performed with dUTP analogues also offer insights into substrate binding characteristics of this important and structurally peculiar enzyme. In this study, alpha,beta-methylene-dUDP was synthesized and its complex with dUTPase was characterized. Enzymatic phosphorylation of this substrate analogue by pyruvate kinase was not possible in contrast to the successful enzymatic phosphorylation of alpha,beta-imino-dUDP. One explanation for this finding is that the different bond angles and the presence of the methylene group may preclude formation of a catalytically competent complex with the kinase. Crystal structure of E. coli dUTPase:alpha,beta-methylene-dUDP and E. coli dUTPase:dUDP:Mn complexes were determined and analyzed in comparison with previous data. Results show that the "trans" alpha-phosphate conformation of alpha,beta-methylene-dUDP differs from the catalytically competent "gauche" alpha-phosphate conformation of the imino analogue and the oxo substrate, manifested in the shifted position of the alpha-phosphorus by more than 3 A. The three-dimensional structures determined in this work show that the binding of the methylene analogue with the alpha-phosphorus in the "gauche" conformation would result in steric clash of the methylene group with the protein atoms. In addition, the metal ion cofactor was not bound in the crystal of the complex with the methylene analogue while it was clearly visible as coordinated to dUDP, arguing that the altered phosphate chain conformation also perturbs metal ion complexation. Isothermal calorimetry titrations indicate that the binding affinity of alpha,beta-methylene-dUDP toward dUTPase is drastically decreased when compared with that of dUDP. In conclusion, the present data suggest that while alpha,beta-methylene-dUDP seems to be practically nonhydrolyzable, it is not a strong binding inhibitor of dUTPase probably due to the altered binding mode of the phosphate chain. Results indicate that in some cases methylene analogues may not faithfully reflect the competent substrate ligand properties, especially if the methylene hydrogens are in steric conflict with the protein.  相似文献   
884.
Mimotopes mimic the three-dimensional topology of an antigen epitope, and are frequently recognized by antibodies with affinities comparable to those obtained for the original antibody-antigen interaction. Peptides and anti-idiotypic antibodies are two classes of protein mimotopes that mimic the topology (but not necessarily the sequence) of the parental antigen. In this study, we combine these two classes by selecting mimotopes based on single domain IgNAR antibodies, which display exceptionally long CDR3 loop regions (analogous to a constrained peptide library) presented in the context of an immunoglobulin framework with adjacent and supporting CDR1 loops. By screening an in vitro phage-display library of IgNAR variable domains (V(NAR)s) against the target antigen monoclonal antibody MAb5G8, we obtained four potential mimotopes. MAb5G8 targets a linear tripeptide epitope (AYP) in the flexible signal sequence of the Plasmodium falciparum Apical Membrane Antigen-1 (AMA1), and this or similar motifs were detected in the CDR loops of all four V(NAR)s. The V(NAR)s, 1-A-2, -7, -11, and -14, were demonstrated to bind specifically to this paratope by competition studies with an artificial peptide and all showed enhanced affinities (3-46 nM) compared to the parental antigen (175 nM). Crystallographic studies of recombinant proteins 1-A-7 and 1-A-11 showed that the SYP motifs on these V(NAR)s presented at the tip of the exposed CDR3 loops, ideally positioned within bulge-like structures to make contact with the MAb5G8 antibody. These loops, in particular in 1-A-11, were further stabilized by inter- and intra- loop disulphide bridges, hydrogen bonds, electrostatic interactions, and aromatic residue packing. We rationalize the higher affinity of the V(NAR)s compared to the parental antigen by suggesting that adjacent CDR1 and framework residues contribute to binding affinity, through interactions with other CDR regions on the antibody, though of course definitive support of this hypothesis will rely on co-crystallographic studies. Alternatively, the selection of mimotopes from a large (<4 x 10(8)) constrained library may have allowed selection of variants with even more favorable epitope topologies than present in the original antigenic structure, illustrating the power of in vivo selection of mimotopes from phage-displayed molecular libraries.  相似文献   
885.
Seebeck B  Reulecke I  Kämper A  Rarey M 《Proteins》2008,71(3):1237-1254
The accurate modeling of metal coordination geometries plays an important role for structure-based drug design applied to metalloenzymes. For the development of a new metal interaction model, we perform a statistical analysis of metal interaction geometries that are relevant to protein-ligand complexes. A total of 43,061 metal sites of the Protein Data Bank (PDB), containing amongst others magnesium, calcium, zinc, iron, manganese, copper, cadmium, cobalt, and nickel, were evaluated according to their metal coordination geometry. Based on statistical analysis, we derived a model for the automatic calculation and definition of metal interaction geometries for the purpose of molecular docking analyses. It includes the identification of the metal-coordinating ligands, the calculation of the coordination geometry and the superposition of ideal polyhedra to identify the optimal positions for free coordination sites. The new interaction model was integrated in the docking software FlexX and evaluated on a data set of 103 metalloprotein-ligand complexes, which were extracted from the PDB. In a first step, the quality of the automatic calculation of the metal coordination geometry was analyzed. In 74% of the cases, the correct prediction of the coordination geometry could be determined on the basis of the protein structure alone. Secondly, the new metal interaction model was tested in terms of predicting protein-ligand complexes. In the majority of test cases, the new interaction model resulted in an improved docking accuracy of the top ranking placements.  相似文献   
886.
Fischer B  Fukuzawa K  Wenzel W 《Proteins》2008,70(4):1264-1273
The adaptation of forcefield-based scoring function to specific receptors remains an important challenge for in-silico drug discovery. Here we compare binding energies of forcefield-based scoring functions with models that are reparameterized on the basis of large-scale quantum calculations of the receptor. We compute binding energies of eleven ligands to the human estrogen receptor subtype alpha (ERalpha) and four ligands to the human retinoic acid receptor of isotype gamma (RARgamma). Using the FlexScreen all-atom receptor-ligand docking approach, we compare docking simulations parameterized by quantum-mechanical calculation of a large protein fragment with purely forcefield-based models. The use of receptor flexibility in the FlexScreen permits the treatment of all ligands in the same receptor model. We find a high correlation between the classical binding energy obtained in the docking simulation and quantum mechanical binding energies and a good correlation with experimental affinities R=0.81 for ERalpha and R=0.95 for RARgamma using the quantum derived scoring functions. A significant part of this improvement is retained, when only the receptor is treated with quantum-based parameters, while the ligands are parameterized with a purely classical model.  相似文献   
887.
The metal ion complexing properties of the ligand HQC (8-hydroxyquinoline-2-carboxylic acid) are reported. The structures of [Zn(HQCH)2] · 3H2O (1) and [Cd(HQCH)2] · 3H2O (2) were determined (HQCH = HQC with phenol protonated). Both 1 and 2 are triclinic, space group , with Z = 2. For 1 a = 7.152(3), b = 9.227(4), c = 15.629(7) Å,  = 103.978(7)°, β = 94.896(7)°, γ = 108.033(8)°, R = 0.0499. For 2 a = 7.0897(5), b = 9.1674(7), c = 16.0672(11) Å,  = 105.0240(10)°, β = 93.9910(10)°, γ = 107.1270(10)°, R = 0.0330. In 1 the Zn has a distorted octahedral coordination geometry, with Zn–N of 2.00 and 2.15 Å, and Zn–O to the protonated phenolic oxygens of 2.431 and 2.220 Å. The structure of 2 is similar, with Cd–N bonds of 2.220 and 2.228 Å, with Cd–O bonds to the protonated phenolate oxygens of 2.334 and 2.463 Å. The structures of 1 and 2, and isomorphous Ni(II) and Co(II) HQC complexes reported in the literature, show very interesting short (<2.5 Å) O–O distances in H-bonds involving the protons on the coordinated phenolates and lattice water molecules. These are discussed in relation to the possible role of short low-energy H-bonds in alcohol dehydrogenase in mediating the transfer of the hydroxyl proton of the alcohol to an adjacent serine oxygen.

The formation constants for HQC are determined by UV–Visible spectroscopy at 25 °C in 0.1 M NaClO4 with Mg(II), Ca(II), Sr(II), Ba(II), La(III), Gd(III), Zn(II), Cd(II), Ni(II), Cu(II), and Pb(II). These show greatest stabilization with metal ions with an ionic radius above 1.0 Å. This is as would be expected from the fact that HQC forms two five-membered chelate rings on complex-formation, which favors larger metal ions. The ligand design concept of using rigid aromatic backbones in ligands to achieve high levels of preorganization, and hence the high log K values (for a tridentate ligand) and strong metal ion selectivities observed for HQC, is discussed.  相似文献   

888.
1. With the aid of a novel survivorship model, an 8-year field study of social and maternal factors affecting duckling survival in eiders (Somateria mollissima) revealed that duckling survival probability varies in accordance with maternal brood-rearing strategy. This variability in survival provides compelling evidence of different annual fitness consequences between females that share brood-rearing and those that tend their broods alone. Consequently, as prebreeding survival is often a major source of individual variation in lifetime reproductive success, a female's annual, state-dependent (e.g. condition) choice of a brood-rearing strategy can be a critical fitness decision. 2. Variance in duckling survival among lone tender broods was best explained by a model with significant interannual variability in survival, and survivorship tending to increase with increasing clutch size at hatch. Clutch size was correlated positively with female condition. Hatch date and female body condition together affected duckling survival, but their contributions are confounded. We were unable to identify a relationship between female age or experience and duckling survival. 3. Variance in duckling survival among multifemale brood-rearing coalitions was best explained by a model that included the number of tenders, the number of ducklings and interannual variation in how their ratio affected survivorship. Hatch date did not significantly influence survival. 4. Expected duckling survival is higher in early life for lone tenders when compared with multifemale brood-rearing coalitions. However, as ducklings approach 2-3 weeks of age, two or three females was the optimal number of tenders to maximize daily duckling survival. The survivorship advantage of multifemale brood-rearing coalitions was most evident in years of average survival. 5. The observed frequency distribution of female group sizes corresponds with the distribution of offspring survival probabilities for these groups. Evidence for optimal group sizes in nature is rare, but the most likely candidates may be groups of unrelated animals where entry is controlled by the group members, such as for female eiders. 6. Our study demonstrates that differences in social factors can lead to different predictions of lifetime reproductive success in species with shared parental care of self-feeding young.  相似文献   
889.
890.
本文介绍了以皂荚胶粉,与阳离子试剂3-氯-2-羟丙基三甲基氯化铵(CHPTMA)为原料,制备季铵型阳离子皂荚胶,通过正交试验确定了生产一定取代度胶粉的最佳反应条件:反应温度65℃;反应时间6h;氢氧化钠与阳离子试剂摩尔比为0.8;乙醇质量分数90%。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号