首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5426篇
  免费   697篇
  国内免费   140篇
  6263篇
  2024年   22篇
  2023年   195篇
  2022年   219篇
  2021年   416篇
  2020年   396篇
  2019年   376篇
  2018年   364篇
  2017年   240篇
  2016年   244篇
  2015年   269篇
  2014年   432篇
  2013年   460篇
  2012年   301篇
  2011年   301篇
  2010年   171篇
  2009年   209篇
  2008年   227篇
  2007年   206篇
  2006年   182篇
  2005年   167篇
  2004年   113篇
  2003年   116篇
  2002年   98篇
  2001年   74篇
  2000年   34篇
  1999年   60篇
  1998年   37篇
  1997年   47篇
  1996年   33篇
  1995年   34篇
  1994年   43篇
  1993年   24篇
  1992年   29篇
  1991年   15篇
  1990年   11篇
  1989年   21篇
  1988年   5篇
  1987年   3篇
  1986年   7篇
  1985年   8篇
  1984年   17篇
  1983年   7篇
  1982年   10篇
  1981年   6篇
  1980年   4篇
  1978年   1篇
  1977年   3篇
  1976年   2篇
  1974年   2篇
  1958年   1篇
排序方式: 共有6263条查询结果,搜索用时 15 毫秒
991.
Fusion of conidia and conidial germlings by means of conidial anastomosis tubes (CATs) is a common phenomenon in filamentous fungi, including many plant pathogens. It has a number of different roles, and has been speculated to facilitate parasexual recombination and horizontal gene transfer between species. The bean pathogen Colletotrichum lindemuthianum naturally undergoes CAT fusion on the host surface and within asexual fruiting bodies in anthracnose lesions on its host. It has not been previously possible to analyze the whole process of CAT fusion in this or any other pathogen using live-cell imaging techniques. Here we report the development of a robust protocol for doing this with C. lindemuthianum in vitro. The percentage of conidial germination and CAT fusion was found to be dependent on culture age, media and the fungal strain used. Increased CAT fusion was correlated with reduced germ tube formation. We show time-lapse imaging of the whole process of CAT fusion in C. lindemuthianum for the first time and monitored nuclear migration through fused CATs using nuclei labelled with GFP. CAT fusion in this pathogen was found to exhibit significant differences to that in the model system Neurospora crassa. In contrast to N. crassa, CAT fusion in C. lindemuthianum is inhibited by nutrients (it only occurs in water) and the process takes considerably longer.  相似文献   
992.
Elasticity imaging can be understood as the intersection of the study of biomechanical properties, imaging sciences, and physics. It was mainly motivated by the fact that pathological tissue presents an increased stiffness when compared to surrounding normal tissue. In the last two decades, research on elasticity imaging has been an international and interdisciplinary pursuit aiming to map the viscoelastic properties of tissue in order to provide clinically useful information. As a result, several modalities of elasticity imaging, mostly based on ultrasound but also on magnetic resonance imaging and optical coherence tomography, have been proposed and applied to a number of clinical applications: cancer diagnosis (prostate, breast, liver), hepatic cirrhosis, renal disease, thyroiditis, arterial plaque evaluation, wall stiffness in arteries, evaluation of thrombosis in veins, and many others. In this context, numerical methods are applied to solve forward and inverse problems implicit in the algorithms in order to estimate viscoelastic linear and nonlinear parameters, especially for quantitative elasticity imaging modalities. In this work, an introduction to elasticity imaging modalities is presented. The working principle of qualitative modalities (sonoelasticity, strain elastography, acoustic radiation force impulse) and quantitative modalities (Crawling Waves Sonoelastography, Spatially Modulated Ultrasound Radiation Force (SMURF), Supersonic Imaging) will be explained. Subsequently, the areas in which numerical methods can be applied to elasticity imaging are highlighted and discussed. Finally, we present a detailed example of applying total variation and AM-FM techniques to the estimation of elasticity.  相似文献   
993.
李琳  熊鑫  马树杰  马志卿  张兴 《昆虫学报》2015,58(7):761-766
【目的】比较松油烯-4-醇光学异构体对家蝇 Musca domestica 的熏蒸活性差异,为其光学异构体的应用提供理论依据。【方法】以家蝇4日龄成虫为供试昆虫,采用三角瓶熏蒸法比较测定了松油烯-4-醇光学异构体和外消旋体对其的熏蒸与击倒活性,并测定了松油烯-4-醇光学异构体及外消旋体对家蝇头部Na+ , K+-ATPase活性的影响。【结果】松油烯-4-醇外消旋体对家蝇的熏蒸活性和击倒活性最强,右旋异构体次之,左旋异构体最差,外消旋体、右旋异构体和左旋异构体对家蝇的致死中浓度(LC50)分别为2.5,2.9和3.7 μL/L;在LC90 剂量下的击倒中时(KT50)分别为12.6,16.7和18.9 min;松油烯-4-醇光学异构体及外消旋体均可显著抑制Na+, K+-ATPase的活性,活体条件下,松油烯-4-醇光学异构体及外消旋体对Na+, K+-ATPase活性的抑制作用随着中毒症状的加剧而增强,具有时间效应,其中左旋异构体的抑制作用最强;离体条件下,松油烯-4-醇光学异构体及外消旋体对Na+, K+-ATPase活性的抑制作用具有浓度依赖效应,其中外消旋体对Na+, K+-ATPase活性的抑制能力最强,明显高于同浓度下的右旋异构体和左旋异构体。【结论】松油烯-4-醇的光学异构体对家蝇的杀虫活性存在差异,外消旋体的活性明显高于异构体单体。开发松油烯-4-醇类杀虫剂,应以光学异构体的混合物作为有效成分。  相似文献   
994.
Hypoxia is considered one of the microenvironmental factors associated with the malignant nature of glioblastoma. Thus, evaluating intratumoural distribution of hypoxia would be useful for therapeutic planning as well as assessment of its effectiveness during the therapy. Electron paramagnetic resonance imaging (EPRI) is an imaging technique which can generate quantitative maps of oxygen in vivo using the exogenous paramagnetic compound, triarylmethyl and monitoring its line broadening caused by oxygen. In this study, the feasibility of EPRI for assessment of oxygen distribution in the glioblastoma using orthotopic U87 and U251 xenograft model is examined. Heterogeneous distribution of pO2 between 0 and 50?mmHg was observed throughout the tumours except for the normal brain tissue. U251 glioblastoma was more likely to exhibit hypoxia than U87 for comparable tumour size (median pO2; 29.7 and 18.2?mmHg, p?=?.028, in U87 and U251, respectively). The area with pO2 under 10?mmHg on the EPR oximetry (HF10) showed a good correlation with pimonidazole staining among tumours with evaluated size. In subcutaneous xenograft model, irradiation was relatively less effective for U251 compared with U87. In conclusion, EPRI is a feasible method to evaluate oxygen distribution in the brain tumour.  相似文献   
995.
Object tracking is an instrumental tool supporting studies of cellular trafficking. There are three challenges in object tracking: the identification of targets; the precise determination of their position and boundaries; and the assembly of correct trajectories. This last challenge is particularly relevant when dealing with densely populated images with low signal‐to‐noise ratios—conditions that are often encountered in applications such as organelle tracking, virus particle tracking or single‐molecule imaging. We have developed a set of methods that can handle a wide variety of signal complexities. They are compiled into a free software package called Diatrack. Here we review its main features and utility in a range of applications, providing a survey of the dynamic imaging field together with recommendations for effective use. The performance of our framework is shown to compare favorably to a wide selection of custom‐developed algorithms, whether in terms of localization precision, processing speed or correctness of tracks.   相似文献   
996.
In this article, we have altered the levels of three different enzymes involved in the Calvin–Benson cycle and photorespiratory pathway. We have generated transgenic Arabidopsis plants with altered combinations of sedoheptulose 1,7‐bisphosphatase (SBPase), fructose 1,6‐bisphophate aldolase (FBPA) and the glycine decarboxylase‐H protein (GDC‐H) gene identified as targets to improve photosynthesis based on previous studies. Here, we show that increasing the levels of the three corresponding proteins, either independently or in combination, significantly increases the quantum efficiency of PSII. Furthermore, photosynthetic measurements demonstrated an increase in the maximum efficiency of CO2 fixation in lines over‐expressing SBPase and FBPA. Moreover, the co‐expression of GDC‐H with SBPase and FBPA resulted in a cumulative positive impact on leaf area and biomass. Finally, further analysis of transgenic lines revealed a cumulative increase of seed yield in SFH lines grown in high light. These results demonstrate the potential of multigene stacking for improving the productivity of food and energy crops.  相似文献   
997.
Precursor messenger RNA (pre-mRNA) splicing is critical for cell growth and development, and errors in RNA splicing frequently cause cellular dysfunction, abnormal gene expression, and a variety of human diseases. However, there is currently a lack of reliable systems to noninvasively monitor the mRNA splicing efficiency in cells and animals. Here, we described the design of a genetically engineered ratiometric dual luciferase reporter to continuously quantify the changes in mRNA splice variants in vivo. This reporter system is encoded within a single polypeptide but on separate exons, thus generating two distinct luciferase signals derived from spliced and unspliced mRNAs. With this reporter, the two kinds of luciferase in the same individual can minimize the influence of indirect factors on splicing, and the ratio of these two luciferase intensities represents the dynamic splicing efficiency of pre-mRNA. Our study offers a convenient and robust tool for the screening and identification of small molecules or trans-acting factors that affect the efficiency of specific splicing reactions.  相似文献   
998.
The basal forebrain cholinergic neurons provide acetylcholine to the cortex via large projections. Recent molecular imaging work in humans indicates that the cortical cholinergic innervation is not uniformly distributed, but rather may disproportionately innervate cortical areas relevant to supervisory attention. In this study, we therefore reexamined the spatial relationship between acetylcholinergic modulation and attention in the human cortex using meta-analytic strategies targeting both pharmacological and non-pharmacological neuroimaging studies. We found that pharmaco-modulation of acetylcholine evoked both increased activity in the anterior cingulate and decreased activity in the opercular and insular cortex. In large independent meta-analyses of non-pharmacological neuroimaging research, we demonstrate that during attentional engagement these cortical areas exhibit (1) task-related co-activation with the basal forebrain, (2) task-related co-activation with one another, and (3) spatial overlap with dense cholinergic innervations originating from the basal forebrain, as estimated by multimodal positron emission tomography and magnetic resonance imaging. Finally, we provide meta-analytic evidence that pharmaco-modulation of acetylcholine also induces a speeding of responses to targets with no apparent tradeoff in accuracy. In sum, we demonstrate in humans that acetylcholinergic modulation of midcingulo-insular hubs of the ventral attention/salience network via basal forebrain afferents may coordinate selection of task relevant information, thereby facilitating cognition and behavior.

  相似文献   

999.
Metal nanoparticle probes were used as molecular imaging agents to detect the expression levels and spatial distributions of the CCR5 receptors on the cell surfaces. Alexa Fluor 647-labeled anti-CCR5 monoclonal antibodies (mAbs) were covalently bound to 20 nm silver nanoparticles to synthesize the mAb–metal complexes. We measured the single nanoparticle emission of the mAb–metal complexes, showing that the complexes displayed enhanced intensities and reduced lifetimes in comparison with the metal-free mAbs. Six HeLa cell lines with various CCR5 expressions were incubated with the mAb–metal complexes for the target-specific binding to the cell surfaces. Fluorescence cell images were recorded on a time-resolved confocal microscope. The collected images expressed clear CCR5 expression-dependent optical properties. Two regression curves were obtained on the basis of the emission intensity and lifetime over the entire cell images against the number of the CCR5 expression on the cells. The emission from the single mAb–metal complexes could be distinctly identified from the cellular autofluorescence on the cell images. The CCR5 spatial distributions on the cells were analyzed on the cell images and showed that the low-expression cells have the CCR5 receptors as individuals or small clusters but the high expression cells have them as the dense and discrete clusters on the cell surfaces.  相似文献   
1000.
Guo Y 《Biometrics》2011,67(4):1532-1542
Independent component analysis (ICA) has become an important tool for analyzing data from functional magnetic resonance imaging (fMRI) studies. ICA has been successfully applied to single-subject fMRI data. The extension of ICA to group inferences in neuroimaging studies, however, is challenging due to the unavailability of a prespecified group design matrix and the uncertainty in between-subjects variability in fMRI data. We present a general probabilistic ICA (PICA) model that can accommodate varying group structures of multisubject spatiotemporal processes. An advantage of the proposed model is that it can flexibly model various types of group structures in different underlying neural source signals and under different experimental conditions in fMRI studies. A maximum likelihood (ML) method is used for estimating this general group ICA model. We propose two expectation-maximization (EM) algorithms to obtain the ML estimates. The first method is an exact EM algorithm, which provides an exact E-step and an explicit noniterative M-step. The second method is a variational approximation EM algorithm, which is computationally more efficient than the exact EM. In simulation studies, we first compare the performance of the proposed general group PICA model and the existing probabilistic group ICA approach. We then compare the two proposed EM algorithms and show the variational approximation EM achieves comparable accuracy to the exact EM with significantly less computation time. An fMRI data example is used to illustrate application of the proposed methods.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号