首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3673篇
  免费   338篇
  国内免费   87篇
  2024年   11篇
  2023年   91篇
  2022年   85篇
  2021年   133篇
  2020年   156篇
  2019年   208篇
  2018年   168篇
  2017年   140篇
  2016年   149篇
  2015年   142篇
  2014年   169篇
  2013年   268篇
  2012年   140篇
  2011年   130篇
  2010年   129篇
  2009年   164篇
  2008年   157篇
  2007年   167篇
  2006年   169篇
  2005年   138篇
  2004年   100篇
  2003年   95篇
  2002年   90篇
  2001年   90篇
  2000年   71篇
  1999年   79篇
  1998年   75篇
  1997年   51篇
  1996年   55篇
  1995年   45篇
  1994年   48篇
  1993年   62篇
  1992年   52篇
  1991年   46篇
  1990年   23篇
  1989年   37篇
  1988年   24篇
  1987年   21篇
  1986年   16篇
  1985年   18篇
  1984年   28篇
  1983年   8篇
  1982年   14篇
  1981年   13篇
  1980年   5篇
  1979年   5篇
  1978年   2篇
  1977年   3篇
  1976年   2篇
  1975年   3篇
排序方式: 共有4098条查询结果,搜索用时 203 毫秒
101.
We studied the effect of high-fat diet on the expression and activation of the three caveolins in rat skeletal muscle and their association with the insulin signalling cascade. Initial response was characterized by increased signalling through Cav-1 and Cav-3 phosphorylation, suggesting that both participate in an initial acute response to the calorie surplus. Afterwards, Cav-1 signalling was slightly reduced, whereas Cav-3 remained active. Late chronic phase signalling through both proteins was impaired inducing a prediabetic state. Summarizing, caveolins seem to mediate a time-dependent regulation of insulin cascade in response to high-fat diet in muscle.  相似文献   
102.
103.
Sub-acute ruminal acidosis (SARA) can reduce the production efficiency and impair the welfare of cattle, potentially in all production systems. The aim of this study was to characterise measurable postmortem observations from divergently managed intensive beef finishing farms with high rates of concentrate feeding. At the time of slaughter, we obtained samples from 19 to 20 animals on each of 6 beef finishing units (119 animals in total) with diverse feeding practices, which had been subjectively classified as being high risk (three farms) or low risk (three farms) for SARA on the basis of the proportions of barley, silage and straw in the ration. We measured the concentrations of histamine, lipopolysaccharide (LPS), lactate and other short-chain fatty acids (SCFAs) in ruminal fluid, LPS and SCFA in caecal fluid. We also took samples of the ventral blind sac of the rumen for histopathology, immunohistopathology and gene expression. Subjective assessments were made of the presence of lesions on the ruminal wall, the colour of the lining of the ruminal wall and the shape of the ruminal papillae. Almost all variables differed significantly and substantially among farms. Very few pathological changes were detected in any of the rumens examined. The animals on the high-risk diets had lower concentrations of SCFA and higher concentrations of lactate and LPS in the ruminal fluid. Higher LPS concentrations were found in the caecum than the rumen but were not related to the risk status of the farm. The diameters of the stratum granulosum, stratum corneum and of the vasculature of the papillae, and the expression of the gene TLR4 in the ruminal epithelium were all increased on the high-risk farms. The expression of IFN-γ and IL-1β and the counts of cluster of differentiation 3 positive and major histocompatibility complex class two positive cells were lower on the high-risk farms. High among-farm variation and the unbalanced design inherent in this type of study in the field prevented confident assignment of variation in the dependent variables to individual dietary components; however, the CP percentage of the total mixed ration DM was the factor that was most consistently associated with the variables of interest. Despite the strong effect of farm on the measured variables, there was wide inter-animal variation.  相似文献   
104.
105.
106.
107.
Antibiotics are designed to affect gut microbiota and subsequently gut homeostasis. However, limited information exists about short- and long-term effects of early antibiotic intervention (EAI) on gut homeostasis (especially for the small intestine) of pigs following antibiotic withdrawal. We investigated the impact of EAI on specific bacterial communities, microbial metabolites and mucosal immune parameters in the small intestine of later-growth-stage pigs fed with diets differing in CP levels. Eighteen litters of piglets were fed creep feed with or without antibiotics from day 7 to day 42. At day 42, pigs within each group were offered a normal- or low-CP diet. Five pigs per group were slaughtered at days 77 and 120. At day 77, EAI increased Enterobacteriaceae counts in the jejunum and ileum and decreased Bifidobacterium counts in the jejunum and ileum (P < 0.05). Moreover, tryptamine, putrescine, secretory immunoglobulin (Ig) A and IgG concentrations in the ileum and interleukin-10 (IL-10) mRNA and protein levels in the jejunum and ileum were decreased in pigs with EAI (P < 0.05). At day 120, EAI only suppressed Clostridium cluster XIVa counts in the jejunum and ileum (P < 0.05). These results suggest that EAI has a short-term effect on specific bacterial communities, amino acid decarboxylation and mucosal immune parameters in the small intestine (particularly in the ileum). At days 77 and 120, feeding a low-CP diet affected Bifidobacterium, Clostridium cluster IV, Clostridium cluster XIVa and Enterobacteriaceae counts in the jejunum or ileum (P < 0.05). Moreover, feeding a low-CP diet increased the concentrations of Igs in the jejunum and decreased pro-inflammatory cytokines levels in the jejunum and ileum (P < 0.05). At day 120, feeding a low-CP diet increased short-chain fatty acid concentrations, reduced ammonia and spermidine concentrations and up-regulated genes related to barrier function in the jejunum and ileum (P < 0.05). These results suggest that feeding a low-CP diet changes specific bacterial communities and intestinal metabolite concentrations and modifies mucosal immune parameters. These findings contribute to our understanding on the duration of the impact of EAI on gut homeostasis and may provide basis data for nutritional modification in young pigs after antibiotic treatment.  相似文献   
108.
There is a need to develop feeding strategies to prevent the adverse effect of concentrate feeding in high-performance horses fed energy-dense diets aiming to maintain their health and welfare. The objective of this study is to determine the effect of a VistaEQ product containing 4% live yeast Saccharomyces cerevisiae (S. cerevisiae), with activity 5 × 108 colony-forming unit/g and fed 2 g/pony per day, on faecal microbial populations when supplemented with high-starch and high-fibre diets using Illumina next generation sequencing of the V3-V4 region of the 16S ribosomal RNA gene. The four treatments were allocated to eight mature Welsh section A pony geldings enrolled in a 4-period × 8 animal crossover design. Each 19-day experimental period consisted of an 18-day adaptation phase and a single collection day, followed by a 7-day wash out period. After DNA extraction from faeces and library preparation, α-diversity and linear discriminant analysis effect size were performed using 16S metagenomics pipeline in Quantitative Insights Into Microbial Ecology (QIIME™) and Galaxy/Hutlab. Differences between the groups were considered significant when linear discriminant analysis score was >2 corresponding to P < 0.05. The present study showed that S. cerevisiae used was able to induce positive changes in the equine microbiota when supplemented to a high-fibre diet: it increased relative abundance (RA) of Lachnospiraceae and Dehalobacteriaceae family members associated with a healthy core microbiome. Yeast supplementation also increased the RA of fibrolytic bacteria (Ruminococcus) when fed with a high-fibre diet and reduced the RA of lactate producing bacteria (Streptococcus) when a high-starch diet was fed. In addition, yeast increased the RA of acetic, succinic acid producing bacterial family (Succinivibrionaceae) and butyrate producing bacterial genus (Roseburia) when fed with high-starch and high-fibre diets, respectively. VistaEQ supplementation to equine diets can be potentially used to prevent acidosis and increase fibre digestibility. It may help to meet the energy requirements of performance horses while maintaining gut health.  相似文献   
109.
The G protein‐coupled receptor (GPCR) encoding family of genes constitutes more than 6% of genes in Caenorhabditis elegans genome. GPCRs control behavior, innate immunity, chemotaxis, and food search behavior. Here, we show that C. elegans longevity is regulated by a chemosensory GPCR STR‐2, expressed in AWC and ASI amphid sensory neurons. STR‐2 function is required at temperatures of 20°C and higher on standard Escherichia coli OP50 diet. Under these conditions, this neuronal receptor also controls health span parameters and lipid droplet (LD) homeostasis in the intestine. We show that STR‐2 regulates expression of delta‐9 desaturases, fat‐5, fat‐6 and fat‐7, and of diacylglycerol acyltransferase dgat‐2. Rescue of the STR‐2 function in either AWC and ASI, or ASI sensory neurons alone, restores expression of fat‐5, dgat‐2 and restores LD stores and longevity. Rescue of stored fat levels of GPCR mutant animals to wild‐type levels, with low concentration of glucose, rescues its lifespan phenotype. In all, we show that neuronal STR‐2 GPCR facilitates control of neutral lipid levels and longevity in C. elegans.  相似文献   
110.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号