首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   183篇
  免费   18篇
  国内免费   16篇
  2023年   2篇
  2021年   4篇
  2020年   8篇
  2019年   5篇
  2018年   5篇
  2017年   6篇
  2016年   13篇
  2015年   8篇
  2014年   7篇
  2013年   5篇
  2012年   11篇
  2011年   7篇
  2010年   10篇
  2009年   6篇
  2008年   9篇
  2007年   15篇
  2006年   9篇
  2005年   10篇
  2004年   10篇
  2003年   3篇
  2002年   3篇
  2001年   9篇
  2000年   9篇
  1999年   3篇
  1998年   6篇
  1997年   3篇
  1996年   7篇
  1994年   3篇
  1993年   4篇
  1992年   3篇
  1991年   4篇
  1990年   1篇
  1988年   2篇
  1987年   2篇
  1986年   2篇
  1983年   1篇
  1979年   2篇
排序方式: 共有217条查询结果,搜索用时 15 毫秒
11.
The importance of olfactory versus contact cues for host plant recognition was investigated in the tortoise beetle Cassida canaliculata Laich. (Coleoptera: Chrysomelidae), which is strictly monophagous on meadow sage. The reaction of adult beetles to olfactory and contact host cues was tested using three bioassays (locomotion compensator, six-chamber-olfactometer, ‘stem arena’) to account for different behavioral contexts. Bioassay-guided fractionation of plant extracts was elaborated to characterize the nature of contact stimuli. The beetles were only slightly attracted to odors from small amounts of leaf material. However, when contact cues were provided additionally, the beetles showed strong preferences for samples of their host plant over controls. Bioassay-guided fractionation led to isolation of at least two non-polar contact stimuli acting in concert that are sufficient for host plant identification in C. canaliculata.  相似文献   
12.
Western flower thrips (WFT), Frankliniella occidentalis (Pergande) (Thysanoptera: Thripidae), is a major pest of horticultural crops worldwide. The search for alternative pest management techniques has resulted in increasing interest in the use of kairomones and other behaviour‐modifying chemicals to mitigate the impact of this pest. In this study, we determined whether the origin of populations, feeding history, and/or genotype influence the response of WFT to the thrips kairomone lure methyl isonicotinate (MI) in a Y‐tube olfactometer study. Four New Zealand thrips populations were tested: (1) from a commercial glasshouse capsicum crop, (2) from a long‐established laboratory colony (>222 generations) kept on chrysanthemums, (3) from a laboratory colony (6–9 generations) kept on French dwarf beans, and (4) thought to be a separate cryptic non‐pest species from outdoor yellow tree lupins, Lupinus arboreus Sims (Fabaceae). In the laboratory tests, significantly more WFT from all four populations chose the MI‐laden arm of a Y‐tube olfactometer when it contained 1 μl methyl isonicotinate (61.3–73.2%) compared with the blank no‐odour arm. No differences in response to MI were found between the two laboratory and the one glasshouse WFT populations. Both laboratory populations and the greenhouse population belonged to the ‘glasshouse pest’ genotype of WFT. However, the cryptic non‐pest WFT genotype responded more strongly to MI than any of the other populations, although the response was only significantly stronger than that of the long‐established laboratory population. Significant differences were also found among populations in the average time taken for thrips to make a choice to enter either arm of the Y‐tube olfactometer, with the cryptic non‐pest lupin genotype taking the shortest time, followed by thrips from the capsicum glasshouse. The results are discussed with respect to the variability in olfactory perception and olfactory behaviour within a species and the relevance to the use of such a kairomone lure in pest management programmes.  相似文献   
13.
Parasitoids are expected to have the ability to find, recognize, and perhaps to discern potential hosts that can best support the development of their progeny. Melittobia Westwood (Hymenoptera: Eulophidae) are gregarious ectoparasitoids, which primarily attack mud daubers (Hymenoptera: Sphecidae). How Melittobia females locate their host is not well known, but the process may involve host‐related chemical signals. In this study, we investigated the roles of host chemical cues and natal rearing effect in host recognition by Mel. digitata Dahms. In an olfactometer that contained prepupae of Trypoxylon politum Say (Hymenoptera: Sphecidae), Megachile rotundata (Fabricius) (Hymenoptera: Megachilidae), puparia of Neobellieria bullata (Parker) (Diptera: Sarcophagidae), empty or intact host cocoons, or nest mud, Mel. digitata females spent significantly more time in air fields that contained T. politum (prepupae + cocoon) and Meg. rotundata (prepupae + cocoon) than in N. bullata and control fields. Nest mud and natal host had no attraction for parasitoid host choice. Most first and last choices of Mel. digitata females in the olfactometer were not consistent, suggesting an initial random dispersion, although they responded positively towards hosts in cocoons.  相似文献   
14.
Many parasitic wasps (parasitoids) exploit volatile organic compounds (VOCs) emitted by herbivore-infested plants in order to locate their hosts, but it remains largely unknown which specific compounds within the volatile blends elicit the attractiveness to parasitoids. One way of studying the importance of specific VOCs is to test the attractiveness of odor blends from which certain compounds have been emitted. We used this approach by testing the attraction of naive and experienced females of the two parasitoids Cotesia marginiventris and Microplitis rufiventris to partially altered volatile blends of maize seedlings (Zea mays var. Delprim) infested with Spodoptera littoralis larvae. Adsorbing filter tubes containing carbotrap-C or silica were installed in a four-arm olfactometer between the odor source vessels and the arms of the olfactometer. The blends breaking through were tested for chemical composition and attractiveness to the wasps. Carbotrap-C adsorbed most of the sesquiterpenes, but the breakthrough blend remained attractive to naive C. marginiventris females. Silica adsorbed only some of the more polar VOCs, but this essentially eliminated all attractiveness to naive C. marginiventris, implying that among the adsorbed compounds there are some that play key roles in the attraction. Unlike C. marginiventris, M. rufiventris was still attracted to the latter blend, showing that parasitoids with a comparable biology may employ different strategies in their use of plant-provided cues to locate hosts. Results from similar experiments with modified odor blends of caterpillar-infested cowpea (Vigna unguiculata) indicate that key VOCs in different plant species vary greatly in quality and/or quantity. Finally, experienced wasps were more strongly attracted to a specific blend after they perceived the blend while ovipositing in a host. Considering the high number of distinct adsorbing materials available today, this in situ modification of complex volatile blends provides a new and promising approach pinpointing on key attractants within these blends. Advantages and disadvantages compared to other approaches are discussed.  相似文献   
15.
The cabbage whitefly [Aleyrodes proletella L. (Hemiptera: Aleyrodidae)] is becoming a serious pest in Brassica oleracea L. (Brassicaceae) crops. However, almost nothing is known about the interaction of this insect with its host plants. Previous studies have shown differences in the natural occurrence of adults, eggs, and nymphs on the closely related B. oleracea cultivars Christmas Drumhead and Riviera grown in the field. In this study, we aimed to identify the nature of these differences and to gain insight into the resistance mechanisms against A. proletella. We used no‐choice experiments on field‐ and greenhouse‐grown plants to show that the differences between the two cultivars are mainly based on antibiosis (traits that reduce herbivore performance) and not on antixenosis (traits that deter herbivory). This was further supported by laboratory choice experiments that indicated little or no discrimination between the two cultivars based on plant volatiles. We showed that resistance is dependent on plant age, that is, resistance increased during plant development, and is mainly independent of environmental factors. Analysis of probing behaviour revealed that the resistance trait affects A. proletella at the phloem level and that morphological differences between the two cultivars are most likely not involved. We suggest that compounds present in the phloem reduce sap ingestion by the whitefly and that this explains the observed resistance.  相似文献   
16.
We tested, in an olfactometer, whether or not Tribolium castaneum Herbst (Coleoptera: Tenebrionidae) responds preferentially to the volatiles that emanate from the fungi associated with cotton [Gossypium hirsutum L. (Malvaceae)] seed over those that emanate from cereals, because cereals are usually portrayed as the primary resources of these beetles. Pairwise comparisons were conducted between cotton seed, wheat (Triticum aestivum L.), and sorghum [Sorghum bicolor (L.) Moench] (both Poaceae); volatiles were tested from intact seeds and from both water and ethanol extracts. The results demonstrate that T. castaneum is attracted more strongly to cotton seeds with its lint contaminated with fungi, than to the conventional resources of this species (i.e., wheat and sorghum). Further tests prove that it is the fungus on the lint that produces the active volatiles, because the beetles did not respond to sterilized cotton lint (i.e., without the fungi typically associated with it when cotton seed is stored). Tests with five fungal cultures (each representing an unidentified species that was isolated from the field‐collected cotton lint) were variable across the cultures, with only one of them being significantly attractive to the beetles. The others were not attractive and one may even have repulsed the beetles. The results are consistent with the beetles having a strong ecological association with fungi and suggest it would be worth investigating the ecology of T. castaneum from this perspective.  相似文献   
17.
The indirect defences of plants are comprised of herbivore‐induced plant volatiles (HIPVs) that among other things attract the natural enemies of insects. However, the actual extent of the benefits of HIPV emissions in complex co‐evolved plant‐herbivore systems is only poorly understood. The observation that a few Quercus robur L. trees constantly tolerated (T‐oaks) infestation by a major pest of oaks (Tortrix viridana L.), compared with heavily defoliated trees (susceptible: S‐oaks), lead us to a combined biochemical and behavioural study. We used these evidently different phenotypes to analyse whether the resistance of T‐oaks to the herbivore was dependent on the amount and scent of HIPVs and/or differences in non‐volatile polyphenolic leaf constituents (as quercetin‐, kaempferol‐ and flavonol glycosides). In addition to non‐volatile metabolic differences, typically defensive HIPV emissions differed between S‐oaks and T‐oaks. Female moths were attracted by the blend of HIPVs from S‐oaks, showing significantly higher amounts of (E)‐4,8‐dimethyl‐1,3,7‐nonatriene (DMNT) and (E)‐β‐ocimene and avoid T‐oaks with relative high fraction of the sesquiterpenes α‐farnesene and germacrene D. Hence, the strategy of T‐oaks exhibiting directly herbivore‐repellent HIPV emissions instead of high emissions of predator‐attracting HIPVs of the S‐oaks appears to be the better mechanism for avoiding defoliation.  相似文献   
18.
The herbivore‐induced plant volatile (HIPV) methyl salicylate (MeSA) is widely present in the chemical profile of several plant species and is known to attract natural enemies, including predatory mites. In this study, the response of Typhlodromus pyri, a key predator of pest mites in west coast vineyards, to synthetically produced MeSA was tested using a Y‐tube olfactometer in laboratory bioassays. Six doses ranging from 0.002 to 200 μg of MeSA diluted in 0.1 ml hexane were tested. Significantly higher proportions of T. pyri preferred MeSA at doses 0.02, 0.2 and 20 μg. No differences in response to MeSA were detected at the highest (200 μg), intermediate (2 μg) and lowest (0.002 μg) doses. Mite response to MeSA was a function of dose when fitting polynomial and logistic regression models using dose and square of the log dose prediction factors. Results indicate that synthetic MeSA may be applied to attract predatory arthropod populations in vineyards to enhance biological control of pest mites.  相似文献   
19.
Most of our knowledge on learning and memory formation results from extensive studies on a small number of animal species. Although features and cellular pathways of learning and memory are highly similar in this diverse group of species, there are also subtle differences. Closely related species of parasitic wasps display substantial variation in memory dynamics and can be instrumental to understanding both the adaptive benefit of and mechanisms underlying this variation. Parasitic wasps of the genus Nasonia offer excellent opportunities for multidisciplinary research on this topic. Genetic and genomic resources available for Nasonia are unrivaled among parasitic wasps, providing tools for genetic dissection of mechanisms that cause differences in learning. This study presents a robust, high‐throughput method for olfactory conditioning of Nasonia using a host encounter as reward. A T‐maze olfactometer facilitates high‐throughput memory retention testing and employs standardized odors of equal detectability, as quantified by electroantennogram recordings. Using this setup, differences in memory retention between Nasonia species were shown. In both Nasonia vitripennis and Nasonia longicornis, memory was observed up to at least 5 days after a single conditioning trial, whereas Nasonia giraulti lost its memory after 2 days. This difference in learning may be an adaptation to species‐specific differences in ecological factors, for example, host preference. The high‐throughput methods for conditioning and memory retention testing are essential tools to study both ultimate and proximate factors that cause variation in learning and memory formation in Nasonia and other parasitic wasp species.  相似文献   
20.
Abstract.  Behavioural assays to study insect attraction to specific odours are tedious, time consuming and often require large numbers of replications. Olfactometer and flight tunnel tests can usually only be conducted with one or two odour sources at a time. Moreover, chemical information on the odour sources has to be obtained in separate analytical studies. An olfactometer was developed in which six odours can be tested simultaneously for their relative attractiveness while during the assays, part of each test odour can be trapped for further analyses. The effectiveness of this six-arm olfactometer was tested by observing the responses of the solitary endoparasitoid Cotesia marginiventris (Cresson) to host-induced odours from young maize plants. For statistical analyses, we used log-linear models were adapted to account for overdispersion and possible positional biases. Female wasps responded extremely well in tests where they were offered a single odour source, as well as in tests with multiple choices. The responses of wasps released in groups were the same as those released individually and it was found that females did not attract or repel each other, but males preferred arms in which females had been released. Dose–response tests with varying numbers of plants or host larvae on plants revealed that the wasps responded in a dose-related manner, thus showing that the system is well suited to measure relative preference. The clear choices of the insects amongst six possibilities provided substantial statistical power. Gas chromatographic analyses of sampled air revealed clean and effective odour trapping, which largely facilitates the comparison of results from behavioural assays with the actual blends of volatiles that were emitted by the various odour sources. Advantages and disadvantages compared to other methods are discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号