首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   728篇
  免费   60篇
  国内免费   308篇
  2024年   15篇
  2023年   56篇
  2022年   49篇
  2021年   63篇
  2020年   34篇
  2019年   51篇
  2018年   43篇
  2017年   39篇
  2016年   35篇
  2015年   12篇
  2014年   38篇
  2013年   62篇
  2012年   31篇
  2011年   26篇
  2010年   21篇
  2009年   41篇
  2008年   51篇
  2007年   53篇
  2006年   39篇
  2005年   42篇
  2004年   31篇
  2003年   32篇
  2002年   16篇
  2001年   24篇
  2000年   14篇
  1999年   22篇
  1998年   20篇
  1997年   13篇
  1996年   12篇
  1995年   16篇
  1994年   11篇
  1993年   10篇
  1992年   14篇
  1991年   11篇
  1990年   12篇
  1989年   4篇
  1988年   3篇
  1987年   3篇
  1986年   4篇
  1985年   2篇
  1984年   7篇
  1983年   4篇
  1982年   5篇
  1978年   1篇
  1976年   1篇
  1975年   1篇
  1973年   1篇
  1958年   1篇
排序方式: 共有1096条查询结果,搜索用时 234 毫秒
21.
The number of microorganisms in the hindgut of dugongs (Dugong dugon) were estimated and their in vitro volatile fatty acid (VFA) production and degradation of eelgrass measured. Scanning electron microscopy showed that some rod bacteria attached to the surface of plant tissue degraded and eroded the cell walls. Number of starch-, lactate-, cellobiose-, pectin-, xylan- and cellulose-utilizing bacteria, sulfate-reducing bacteria and methane-producing bacteria were estimated at 109 ~ 1010 colony forming units g?1. Microorganisms degraded the cellulose and noncellulolytic components of the eelgrass, and about 47.3% of dry matter was degraded after 36?h in vitro incubation. The total VFA concentration was 10.5?mmol?dL?1 at 36?h incubation, which included 55.7?mol% acetate, 18.0?mol% n-butyrate and 15.1?mol% propionate. The gas composition of in vitro fermentation was 68.4% carbon dioxide, 22.2% methane and 9.4% hydrogen.  相似文献   
22.
In nature, phenols and cyanides are produced by certain microbes and plants. Phenols are antioxidants found in almost all plants, and cyanides are important components of lima beans, almonds, and cassava. Their presence in small amounts may not upset the environment, but their large-scale production, wide applicability, and unrestricted release by the industries makes them widespread and important pollutants. Phenols and cyanides can be recovered/removed from wastewater streams using various physicochemical techniques practiced commercially. Lack of complete mineralization, cost-effectiveness, and release of secondary by-products are amongst a few of the major considerations that limit the installation of such processes. Biological removal of such pollutants from industrial waste has gained momentum in recent years, as they promise to surpass the major drawbacks laid by the physicochemical methods and can be practically carried out in all conditions. Presence of either cyanide or phenol is highly dangerous, and in the presence of both, the effect is compounded. The present review illustrates the various industries involved in the release of phenols, cyanides, or both; it summarizes the available technologies for their treatment and emphasizes recent advances and advantages of biological abatement of these pollutants.  相似文献   
23.
Pipecolic acid naturally occurs in microorganisms, plants, and animals, where it plays many roles, including the interactions between these organisms, and is a key constituent of many natural and synthetic bioactive molecules. This article provides a review of current knowledge on the natural occurrence of pipecolic acid and the known and potential significance of its L‐ and D‐enantiomers in different scientific disciplines. Knowledge gaps with perspectives for future research identified within this article include the roles of the L‐ versus the D‐enantiomer of pipecolic acid in plant resistance, nutrient acquisition, and decontamination of polluted soils, as well as rhizosphere ecology and medical issues. Chirality 25:823–831, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   
24.
Adverse conditions in the acid mine drainage (AMD) system at the Green Valley mine, Indiana, limit diatom diversity to one species, Nitzschia tubicola. It is present in three distinct microbial consortia: Euglena mutabilis-dominated biofilm, diatomdominated biofilm, and diatom-exclusive biofilm. E. mutabilis dominates the most extensive biofilm, with lesser numbers of N. tubicola, other eukaryotes, and bacteria. Diatom-dominated biofilm occurs as isolated patches containing N. tubicola with minor fungal hyphae, filamentous algae, E. mutabilis, and bacteria. Diatom-exclusive biofilm is rare, composed entirely of N. tubicola.

Diatom distribution is influenced by seasonal and intraseasonal changes in water temperature and chemistry. Diatoms are absent in winter due to cool water temperatures. In summer, isolated patchy communities are present due to warmer water temperatures. In 2001, the diatom community expanded its distribution following a major rainfall that temporarily diluted the effluent, creating hospitable conditions for diatom growth. After several weeks when effluent returned to preexisting conditions, the diatom biofilm retreated to isolated patches, and E. mutabilis biofilm flourished.

Iron-rich stromatolites underlie the biofilms and consist of distinct laminae, recording spatial and temporal oscillations in physicochemical conditions and microbial activity. The stromatolites are composed of thin, wavy laminae with partially decayed E. mutabilis biofilm, representing microbial activity and iron precipitation under normal AMD conditions. Alternating with the wavy layers are thicker, porous, spongelike laminae composed of iron precipitated on and incorporated into radiating colonies of diatoms. These layers indicate episodic changes in water chemistry, allowing diatoms to temporarily dominate the system.  相似文献   
25.
If you were asked to speculate about the form extra-terrestrial life on Mars might take, which geomicrobial phenomenon might you select as a model system, assuming that life on Mars would be ‘primitive’? Give your reasons.  相似文献   
26.
To test the hypothesis that a switch in diet might cause changes in the abundance and composition of mucous‐dwelling microorganisms, a short‐term experiment was conducted with Atlantic salmon Salmo salar. Fish were fed on three different diets: pelleted S. salar feed, macroinvertebrates or pellets supplemented with an antibiotic. A fourth group of fish was deprived of food throughout the trial. Seven days after manipulating diets, significant differences were found in microbial density and community composition (quantified by different morphologically distinct colonies), particularly between fed and unfed animals. Moreover, food deprivation caused a rapid decrease in the number of epidermal mucous cells of the lateral skin, which may indicate a decrease in mucous secretion and explain differences in the diversity of mucous‐dwelling microbiota observed in the fish. This is the first report of an effect of feeding regime on the abundance of microbial communities associated with cutaneous mucus of fishes.  相似文献   
27.
Abstract

Allelopathy is defined as the suppression of any aspect of growth and/or development of one plant by another through the release of chemical compounds. Although allelopathic interference has been demonstrated many times using in vitro experiments, few studies have clearly demonstrated allelopathy in natural settings. This difficulty reflects the complexity in examining and demonstrating allelopathic interactions under field conditions. In this paper we address a number of issues related to the complexity of allelopathic interference in higher plants: These are: (i) is a demonstrated pattern or zone of inhibition important in documenting allelopathy? (ii) is it ecologically relevant to explain the allelopathic potential of a species based on a single bioactive chemical? (iii) what is the significance of the various modes of allelochemical release from the plant into the environment? (iv) do soil characteristics clearly influence allelopathic activity? (v) is it necessary to exclude other plant interference mechanisms?, and (vi) how can new achievements in allelopathy research aid in solving problems related to relevant ecological issues encountered in research conducted upon natural systems and agroecosystems? A greater knowledge of plant interactions in ecologically relevant environments, as well as the study of biochemical pathways, will enhance our understanding of the role of allelopathy in agricultural and natural settings. In addition, novel findings related to the relevant enzymes and genes involved in production of putative allelochemicals, allelochemical persistence in the rhizosphere, the molecular target sites of allelochemicals in sensitive plant species and the influence of allelochemicals upon other organisms will likely lead to enhanced utilization of natural products for pest management or as pharmaceuticals and nutraceuticals. This review will address these recent findings, as well as the major challenges which continue to influence the outcomes of allelopathy research.  相似文献   
28.
Plants have evolved complex biochemical mechanisms to counter threats from insect herbivory. Recent research has revealed an important role of roots in plant responses to above ground herbivory (AGH). The involvement of roots is integral to plant resistance and tolerance mechanisms. Roots not only play an active role in plant defenses by acting as sites for biosynthesis of various toxins and but also contribute to tolerance by storing photoassimilates to enable future regrowth. The interaction of roots with beneficial soil‐borne microorganisms also influences the outcome of the interaction between plant and insect herbivores. Shoot‐to‐root communication signals are critical for plant response to AGH. A better understanding of the role of roots in plant response to AGH is essential in order to develop a comprehensive picture of plant‐insect interactions. Here, we summarize the current status of research on the role of roots in plant response to AGH and also discuss possible signals involved in shoot‐to‐root communication.  相似文献   
29.
Polycyclic aromatic hydrocarbons (PAHs) contamination has been considered as one of the major environmental concerns for farmland soil all over the world including China. Due to small per capita land area, to find crops or vegetable, which could not only degrade the PAHs contaminants but also would not concentrate PAHs, was particularly important. Celery was selected as the phytoremediator in this experiment, and the soil enzyme activity, PAHs-degrading microorganisms, and the speciation of PAHs in soil were studied. The results showed that celery could significantly enhance the remediation of PAHs compared with the controlled experiment after 90 days (p< 0.01), and the removal efficiency were 31.29%, 30.79%, and 50.21% in the soil, non-rhizosphere soil, and rhizosphere soil, respectively. The soil enzyme activity and PAHs-degrading microorganisms significantly increased in rhizosphere soil compared with non-rhizosphere soil (p< 0.05), and the bioaccessibility of PAHs in soil could have been enhanced in the presence of celery root exudates. Those would help the bioremediation of PAHs by soil microorganisms. Meanwhile, the concentration of PAHs in the edible portion of celery was only 17.13 ± 1.24 μg/kg, and the bioconcentration factors in the aboveground part of celery were only 0.025. This study provides a potential in-site farmland soil phytoremediation technology that could have practical utility.  相似文献   
30.
Bioaerosols (or biogenic aerosols) have largely been overlooked by molecular ecologists. However, this is rapidly changing as bioaerosols play key roles in public health, environmental chemistry and the dispersal ecology of microbes. Due to the low environmental concentrations of bioaerosols, collecting sufficient biomass for molecular methods is challenging. Currently, no standardized methods for bioaerosol collection for molecular ecology research exist. Each study requires a process of optimization, which greatly slows the advance of bioaerosol science. Here, we evaluated air filtration and liquid impingement for bioaerosol sampling across a range of environmental conditions. We also investigated the effect of sampling matrices, sample concentration strategies and sampling duration on DNA yield. Air filtration using polycarbonate filters gave the highest recovery, but due to the faster sampling rates possible with impingement, we recommend this method for fine ‐scale temporal/spatial ecological studies. To prevent bias for the recovery of Gram‐positive bacteria, we found that the matrix for impingement should be phosphate‐buffered saline. The optimal method for bioaerosol concentration from the liquid matrix was centrifugation. However, we also present a method using syringe filters for rapid in‐field recovery of bioaerosols from impingement samples, without compromising microbial diversity for high ‐throughput sequencing approaches. Finally, we provide a resource that enables molecular ecologists to select the most appropriate sampling strategy for their specific research question.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号