首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   512篇
  免费   123篇
  国内免费   31篇
  666篇
  2024年   3篇
  2023年   22篇
  2022年   10篇
  2021年   14篇
  2020年   38篇
  2019年   51篇
  2018年   41篇
  2017年   49篇
  2016年   34篇
  2015年   38篇
  2014年   49篇
  2013年   79篇
  2012年   45篇
  2011年   34篇
  2010年   15篇
  2009年   21篇
  2008年   25篇
  2007年   8篇
  2006年   8篇
  2005年   12篇
  2004年   8篇
  2003年   3篇
  2002年   6篇
  2001年   6篇
  2000年   4篇
  1999年   8篇
  1998年   6篇
  1997年   2篇
  1996年   1篇
  1995年   3篇
  1994年   1篇
  1993年   4篇
  1992年   1篇
  1991年   2篇
  1990年   1篇
  1989年   3篇
  1988年   3篇
  1986年   1篇
  1984年   1篇
  1980年   2篇
  1979年   1篇
  1976年   1篇
  1973年   1篇
  1958年   1篇
排序方式: 共有666条查询结果,搜索用时 15 毫秒
41.
The fundamental challenge of the inclusion of the human dimension of the oceans in the Integrated Ecosystem Assessments (IEAs) provides an opportunity for a transdisciplinary approach to create synergies between the current research by the International Council for the Exploration of the Sea (ICES) and the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES). We have highlighted the importance of ocean inequality as a critical aspect to consider to unlock current barriers to integrate social sciences in marine integrated assessments. To create bridges between them, we develop an Ocean's Benefits to People (OBP) framework that embraces the blue economy, equity, the UN SDGs goals and support an Ecosystem-Based Management (EBM) for the oceans.  相似文献   
42.
海洋野生鱼与养殖鱼比较, 其鱼油中含更多的二十碳五烯酸(EPA)、二十二碳六烯酸(DHA)、脂溶性维生素等活性成分。为提高海洋野生鱼的利用价值, 以野生小带鱼为原料进行酶法提油工艺研究。分析了不同的温度, 时间, pH值等影响因素下的提取、萃取以及离心效果, 以响应面法确定了最佳的酶解工艺条件: 液固比为6、pH7.3、酶量1000 u/g原料、搅拌速度200 r/min、45oC酶解90 min; 最优萃取条件: 萃取剂100 mL(每20 g鱼糜原料)、pH4.0、40oC萃取25 min; 离心条件: 离心速度3000 r/min (1865 g)、离心时间10 min。上述工艺条件下提油率为79.90%。改进了传统的鱼油提取工艺, 在活性成分保护上有较大改善。  相似文献   
43.
Aim Macroecological theory predicts that along direct physiological gradients there will be unimodal abundance distributions of species and consistent rates of assemblage turnover. However, the majority of marine studies that have investigated the realized distribution of species along latitudinal or temperature gradients have generally found unimodal distributions to be rare. We assess fish distributions along a temperature gradient in a stable oligotrophic seascape and suggest that unimodal distributions will be more common. Location Nearshore demersal fish habitat extending 1500 km along the coast of south‐western Australia. Methods The relative abundances of demersal fish species were sampled off the coast of south‐western Australia along a temperature gradient. The confounding influence of other environmental variables was tested, and the assemblage was found to be highly correlated with temperature. For the 20 most abundant species, quantile regression spline models were used to construct a model within which 95% of their abundance was expected to fall. We compared the results from this study with the proportion of unimodal species abundance distributions observed in other studies. Results Of the 20 most abundant species, 19 displayed patterns that indicated temperature was an important factor influencing their range and relative abundance; with 15 species exhibiting unimodal abundance distributions, four having ramped distribution to one end of the sampled range and one showing no consistent pattern. Main conclusions The high diversity and percentage of endemic species in terrestrial and marine habitats of south‐western Australia is likely to be due to the stable geological and oceanographic history of the region. In comparison, studies of abundance distribution in other marine systems have been conducted in relatively heterogeneous and productive environments. The old, climatically buffered, oligotrophic seascape of south‐western Australia has provided a simple system in which the consistent influence of physiological gradients on the abundance distribution of fish species can be observed.  相似文献   
44.
Volcanic ocean crust contains a global chemosynthetic microbial ecosystem that impacts ocean productivity, seawater chemistry and geochemical cycling. We examined the mineralogical effect on community structure in the aquifer ecosystem by using a four-year in situ colonization experiment with igneous minerals and glasses in Integrated Ocean Drilling Program Hole 1301A on the Juan de Fuca Ridge. Microbial community analysis and scanning electron microscopy revealed that olivine phases and iron-bearing minerals bore communities that were distinct from iron-poor phases. Communities were dominated by Archaeoglobaceae, Clostridia, Thermosipho, Desulforudis and OP1 lineages. Our results suggest that mineralogy determines microbial composition in the subseafloor aquifer ecosystem.  相似文献   
45.
Research efforts have intensified to foresee the prospects for marine biomes under climate change and anthropogenic drivers over varying temporal and spatial scales. Parallel with these efforts is the utilization of terminology, such as ‘ocean acidification’ (OA) and ‘ocean deoxygenation’ (OD), that can foster rapid comprehension of complex processes driving carbon dioxide (CO2) and oxygen (O2) concentrations in the global ocean and thus, are now widely used in discussions within and beyond academia. However, common usage of the terms ‘acidification’ and ‘deoxygenation’ alone are subjective and, without adequate contextualization, have the potential to mislead inferences over drivers that may ultimately shape the future state of marine ecosystems. Here we clarify the usage of the terms OA and OD as global, climate change‐driven processes and discuss the various attributes of elevated CO2 and reduced O2 syndromes common to coastal ecosystems. We support the use of the existing terms ‘coastal acidification’ and ‘coastal deoxygenation’ because they help differentiate the sometimes rapid and extreme nature of CO2 and O2 syndromes in coastal ecosystems from the global, climate change‐driven processes of OA and OD. Given the complexity and breadth of the processes involved in altering CO2 and O2 concentrations across marine ecosystems, we provide a workflow to enable contextualization and clarification of the usage of existing terms and highlight the close link between these two gases across spatial and temporal scales in the ocean. These distinctions are crucial to guide effective communication of research within the scientific community and guide policymakers responsible for intervening on the drivers to secure desirable future ocean states.  相似文献   
46.
Ecosystem functioning is simultaneously affected by changes in community composition and environmental change such as increasing atmospheric carbon dioxide (CO2) and subsequent ocean acidification. However, it largely remains uncertain how the effects of these factors compare to each other. Addressing this question, we experimentally tested the hypothesis that initial community composition and elevated CO2 are equally important to the regulation of phytoplankton biomass. We full‐factorially exposed three compositionally different marine phytoplankton communities to two different CO2 levels and examined the effects and relative importance (ω2) of the two factors and their interaction on phytoplankton biomass at bloom peak. The results showed that initial community composition had a significantly greater impact than elevated CO2 on phytoplankton biomass, which varied largely among communities. We suggest that the different initial ratios between cyanobacteria, diatoms, and dinoflagellates might be the key for the varying competitive and thus functional outcome among communities. Furthermore, the results showed that depending on initial community composition elevated CO2 selected for larger sized diatoms, which led to increased total phytoplankton biomass. This study highlights the relevance of initial community composition, which strongly drives the functional outcome, when assessing impacts of climate change on ecosystem functioning. In particular, the increase in phytoplankton biomass driven by the gain of larger sized diatoms in response to elevated CO2 potentially has strong implications for nutrient cycling and carbon export in future oceans.  相似文献   
47.
Predicting the impacts of environmental change on marine organisms, food webs, and biogeochemical cycles presently relies almost exclusively on short‐term physiological studies, while the possibility of adaptive evolution is often ignored. Here, we assess adaptive evolution in the coccolithophore Emiliania huxleyi, a well‐established model species in biological oceanography, in response to ocean acidification. We previously demonstrated that this globally important marine phytoplankton species adapts within 500 generations to elevated CO2. After 750 and 1000 generations, no further fitness increase occurred, and we observed phenotypic convergence between replicate populations. We then exposed adapted populations to two novel environments to investigate whether or not the underlying basis for high CO2‐adaptation involves functional genetic divergence, assuming that different novel mutations become apparent via divergent pleiotropic effects. The novel environment “high light” did not reveal such genetic divergence whereas growth in a low‐salinity environment revealed strong pleiotropic effects in high CO2 adapted populations, indicating divergent genetic bases for adaptation to high CO2. This suggests that pleiotropy plays an important role in adaptation of natural E. huxleyi populations to ocean acidification. Our study highlights the potential mutual benefits for oceanography and evolutionary biology of using ecologically important marine phytoplankton for microbial evolution experiments.  相似文献   
48.
Abstract.— The causes of speciation in the sea are rarely obvious, because geographical barriers are not conspicuous and dispersal abilities or marine organisms, particularly those of species with planktonic larvae, are hard to determine. The phylogenetic relations of species in cosmopolitan genera can provide information on the likely mode of their formation. We reconstructed the phylogeny of the pantropical and subtropical sea urchin genus Diadema, using sequences of mitochondrial DNA from 482 individuals collected around the world, to determine the efficacy of barriers to gene flow and to ascertain the history of possible dispersal and vicariance events that led to speciation. We also compared 22 isozyme loci between all described species except D. palmeri. The mitochondrial DNA data show that the two deepest lineages are found in the Indian and West Pacific Oceans. (Indo‐Pacific) Diadema setosum diverged first from all other extant Diadema, probably during the initiation of wide fluctuations in global sea levels in the Miocene. The D. setosum clade then split 3‐5 million years ago into two clades, one found around the Arabian Peninsula and the other in the Indo‐West Pacific. On the lineage leading to the other species of Diadema, the deepest branch is composed of D. palmeri, apparently separated when the climate of New Zealand became colder and other tropical echinoids at these islands went extinct. The next lineage to separate is composed of a currently unrecognized species of Diadema that is found at Japan and the Marshall Islands. Diadema mexicanum in the eastern Pacific separated next, whereas D. paucispinum, D. savignyi, and D. antillarum from the western and central Atlantic, and (as a separate clade) D. antillarum from the eastern Atlantic form a shallow polytomy. Apparently, Indo‐Pacific populations of Diadema maintained genetic contact with Atlantic ones around the southern tip of Africa for some time after the Isthmus of Panama was complete. Diadema paucispinum contains two lineages: D. paucispinum sensu stricto is not limited to Hawaii as previously thought, but extends to Easter Island, Pitcairn, and Okinawa; A second mitochondrial clade of D. paucispinum extends from East Africa and Arabia to the Philippines and New Guinea. A more recent separation between West Indian Ocean and West Pacific populations was detected in D. setosum. Presumably, these genetic discontinuities are the result of water flow restrictions in the straits between northern Australia and Southeast Asia during Pleistocene episodes of low sea level. Diadema savignyi is characterized by high rates of gene flow from Kiribati in the central Pacific all the way to the East African Coast. In the Atlantic, there is a biogeographic barrier between the Caribbean and Brazil, possibly caused by fresh water outflow from the Amazon and the Orinoco Rivers. Diadema antillarum populations of the central Atlantic islands of Ascension and St. Helena are genetically isolated and phylogenetically derived from Brazil. Except for its genetic separation by the mid‐Atlantic barrier, Diadema seems to have maintained connections through potential barriers to dispersal (including the Isthmus of Panama) more recently than did Eucidaris or Echinometra, two other genera of sea urchins in which phylogeography has been studied. Nevertheless, the mtDNA phylogeography of Diadema includes all stages expected from models of allopatric differentiation. There are anciently separated clades that now overlap in their geographic distribution, clades isolated in the periphery of the genus range that have remained in the periphery, clades that may have been isolated in the periphery but have since spread towards the center, closely related clades on either side of an existing barrier, and closely related monophyletic entities on either side of an historical barrier that have crossed the former barrier line, but have not attained genetic equilibrium. Except for D. paucispinum and D. savignyi, in which known hybridization may have lodged mtDNA from one species into the genome of the other, closely related clades are always allopatric, and only distantly related ones overlap geographically. Thus, the phylogenetic history and distribution of extant species of Diadema is by and large consistent with allopatric speciation.  相似文献   
49.
Climate change refugia in the terrestrial biosphere are areas where species are protected from global environmental change and arise from natural heterogeneity in landscapes and climate. Within the marine realm, ocean acidification, or the global decline in seawater pH, remains a pervasive threat to organisms and ecosystems. Natural variability in seawater carbon dioxide (CO2) chemistry, however, presents an opportunity to identify ocean acidification refugia (OAR) for marine species. Here, we review the literature to examine the impacts of variable CO2 chemistry on biological responses to ocean acidification and develop a framework of definitions and criteria that connects current OAR research to management goals. Under the concept of managing vulnerability, the most likely mechanisms by which OAR can mitigate ocean acidification impacts are by reducing exposure to harmful conditions or enhancing adaptive capacity. While local management options, such as OAR, show some promise, they present unique challenges, and reducing global anthropogenic CO2 emissions must remain a priority.  相似文献   
50.
The southeast coast of Australia is a global hotspot for increasing ocean temperatures due to climate change. The temperate incursion of the East Australian Current (EAC) is increasing, affording increased connectivity with the Great Barrier Reef. The survival of tropically sourced juveniles over the winter is a significant stumbling block to poleward range shifts of marine organisms in this region. Here we examine the dependence of overwintering on winter severity and prewinter recruitment for eight species of juvenile coral reef fishes which are carried into temperate SE Australia (30–37 °S) by the EAC during the austral summer. The probability of persistence was most strongly influenced by average winter temperature and there was no effect of recruitment strength. Long‐term (138 years) data indicate that winter water temperatures throughout this region are increasing at a rate above the global average and predictions indicate a further warming of >2 °C by the end of the century. Rising ocean temperatures are resulting in a higher frequency of winter temperatures above survival thresholds. Current warming trajectories predict 100% of winters will be survivable by at least five of the study species as far south as Sydney (34 °S) by 2080. The implications for range expansions of these and other species of coral reef fish are discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号