首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1501篇
  免费   190篇
  国内免费   357篇
  2024年   10篇
  2023年   42篇
  2022年   42篇
  2021年   40篇
  2020年   56篇
  2019年   64篇
  2018年   69篇
  2017年   68篇
  2016年   75篇
  2015年   63篇
  2014年   74篇
  2013年   78篇
  2012年   64篇
  2011年   61篇
  2010年   62篇
  2009年   78篇
  2008年   104篇
  2007年   128篇
  2006年   82篇
  2005年   84篇
  2004年   101篇
  2003年   85篇
  2002年   75篇
  2001年   68篇
  2000年   53篇
  1999年   46篇
  1998年   52篇
  1997年   31篇
  1996年   25篇
  1995年   22篇
  1994年   13篇
  1993年   13篇
  1992年   12篇
  1991年   18篇
  1990年   16篇
  1989年   9篇
  1988年   11篇
  1987年   8篇
  1986年   7篇
  1985年   10篇
  1984年   4篇
  1983年   6篇
  1982年   5篇
  1981年   4篇
  1980年   3篇
  1978年   2篇
  1977年   1篇
  1976年   3篇
  1958年   1篇
排序方式: 共有2048条查询结果,搜索用时 15 毫秒
151.
Stable carbon isotope composition (δ13C), net photosynthetic rate (P N), actual quantum yield of photosystem 2 (PS2) electron transport (ΦPS2), nitrogen content (Nc), and photosynthetic nitrogen use efficiency (PNUE) in the leaves of six broadleaf tree species were determined under field environmental conditions. The six tree species were Magnolia liliflora Desr., M. grandiflora Linn., M. denudata Desr., Prunus mume (Sieb.) Sieb. et Zucc. cv. Meiren Men, P. mume (Sieb.) Sieb. et Zucc. f. alphandii (Carr.) Rehd., and P. persica (L.) Batsch. var. rubro-plena. The relationships among δ13C, ΦPS2, P N, and PNUE, as well as their responses to Nc in the six species were also studied. Both P N and δ13C negatively correlated with Nc, but ΦPS2 positively correlated with Nc. This indicated that with Nc increase, P N and δ13C decreased, while ΦPS2 increased. There were weak negative correlations between δ13C and PNUE, and strong negative correlations (p<0.01) between ΦPS2 and PNUE. According to the variance analysis of parameters, there existed significant interspecific differences (p<0.001) of δ13C, P N, ΦPS2, PNUE, and Nc among the tree seedlings of the six tree species, which suggests that the potential photosynthetic capacities depend on plant species, irradiance, and water use capacity under field conditions.  相似文献   
152.
The selectivity of the traditional commercial bottom trawl net employed in Sicily to catch the Mediterranean deep-water rose shrimp, Parapenaeus longirostris, has been assessed. Two fishing campaigns were carried out in the Strait of Sicily and in the Southern Tyrrhenian Sea, using the covered cod-end method (mesh 20 mm vs. 31 mm). Of a total catch of 11,601 individuals, 23.4% escaped in the cover; the sample length structure from the Strait is unimodal, while that from the Tyrrhenian, polymodal. A logistic curve, fitted with a maximum likelihood criterion, has been used to model the selectivity data, in order to obtain the parameters CLc50% (50% retention size), SR75–25% (selection range) and SF (selection factor, i.e. CLc50%/mesh). The two sets of data, besides a larger selection range for the Strait sample (5.2 mm vs. 2.3 mm), produced very similar estimates (retention sizes of 13.0 mm vs. 12.8 mm CL), fitting the logistic curve well. Almost no shrimp larger than 20 mm does escape from the cod-end; moreover, from the amount of damaged specimens found in the cover, even the evaded shrimps sustain a high fishing mortality. An increase of the present cod-end mesh opening, even above the size required by the EU bylaws (at present, 40 mm stretched) seems necessary for managing the fishery.  相似文献   
153.
Vile D  Shipley B  Garnier E 《Ecology letters》2006,9(9):1061-1067
We show that ecosystem-specific aboveground net primary productivity (SANPP, g g−1 day−1, productivity on a per gram basis) can be predicted from species-level measures of potential relative growth rate (RGRmax), but only if RGRmax is weighted according to the species' relative abundance. This is in agreement with Grime's mass-ratio hypothesis. Productivity was measured in 12 sites in a French Mediterranean post-agricultural succession, while RGRmax was measured on 26 of the most abundant species from this successional sere, grown hydroponically. RGRmax was only weakly correlated ( r 2 = 0.12, P  < 0.05) with field age when species abundance was not considered, but the two variables were strongly correlated ( r 2 = 0.81, P  < 0.001) when the relative abundance of species in each field was taken into account. SANPP also decreased significantly with field age. This resulted in a tight relationship ( r 2 = 0.77, P  < 0.001) between productivity and RGRmax weighted according to species relative biomass contribution. Our study shows that scaling-up from the potential properties of individual species is possible, and that information on potential and realized species traits can be integrated to predict ecosystem functioning.  相似文献   
154.
Oishi K  Hirooka H 《Theriogenology》2012,77(2):320-330
The effects of sex control and twinning techniques on determination of optimal culling parity of cows in beef cow-calf production systems were deterministically analyzed using a herd model simulation. The model simulated the annualized net revenue as an economic indicator during the whole life cycle of a cow. Biological factors (survivability, growth, reproduction, and feed requirements) and economic factors (returns from sales of live calves and cows' carcasses and production costs) were included in the model. Some biological and economic parameters relating to these factors were altered from a base condition in order to adapt the production systems with sex control and twinning techniques. Based on the model, early culling was optimal for all production systems when biological efficiency was used as an indicator of production; however, later culling was optimal for single production, but slightly earlier culling was optimal for twin production, when annualized net revenue was evaluated. The introduction of sex control did not greatly affect the determination of the optimal culling parity of cows. When production included the sex control, female sexing increased biological efficiency, whereas male sexing increased annualized net revenue. In the present beef cow-calf production circumstances in Japan, introduction of sex control did not have economically appreciable effects, but twinning was economically beneficial. For production involving sex control, improvement in the conception rate per mating and/or reduction of technical cost were required for this technology to be profitable.  相似文献   
155.
Fine root production is the largest component of belowground production and plays substantial roles in the biogeochemical cycles of terrestrial ecosystems. The increasing availability of nitrogen (N) and phosphorus (P) due to human activities is expected to increase aboveground net primary production (ANNP), but the response of fine root production to N and P remains unclear. If roots respond to nutrients as ANNP, fine root production is anticipated to increase with increasing soil N and P. Here, by synthesizing data along the nutrient gradient from 410 natural habitats and from 469 N and/or P addition experiments, we showed that fine root production increased in terrestrial ecosystems with an average increase along the natural N gradient of up to 0.5 per cent with increasing soil N. Fine root production also increased with soil P in natural conditions, particularly at P < 300 mg kg(-1). With N, P and combined N + P addition, fine root production increased by a global average of 27, 21 and 40 per cent, respectively. However, its responses differed among ecosystems and soil types. The global average increases in fine root production are lower than those of ANNP, indicating that above- and belowground counterparts are coupled, but production allocation shifts more to aboveground with higher soil nutrients. Our results suggest that the increasing fertilizer use and combined N deposition at present and in the future will stimulate fine root production, together with ANPP, probably providing a significant influence on atmospheric CO(2) emissions.  相似文献   
156.
Growing concerns about energy and the environment have led to worldwide use of bioenergy. Switching from food crops to biofuel crops is an option to meet the fast‐growing need for biofuel feedstocks. This land use change consequently affects the ecosystem carbon balance. In this study, we used a biogeochemistry model, the Terrestrial Ecosystem Model, to evaluate the impacts of this change on the carbon balance, bioenergy production, and agricultural yield, assuming that several land use change scenarios from corn, soybean, and wheat to biofuel crops of switchgrass and Miscanthus will occur. We found that biofuel crops have much higher net primary production (NPP) than soybean and wheat crops. When food crops from current agricultural lands were changed to different biofuel crops, the national total NPP increased in all cases by a range of 0.14–0.88 Pg C yr?1, except while switching from corn to switchgrass when a decrease of 14% was observed. Miscanthus is more productive than switchgrass, producing about 2.5 times the NPP of switchgrass. The net carbon loss ranges from 1.0 to 6.3 Tg C yr?1 if food crops are changed to switchgrass, and from 0.4 to 6.7 Tg C yr?1 if changed to Miscanthus. The largest loss was observed when soybean crops were replaced with biofuel crops. Soil organic carbon increased significantly when land use changed, reaching 100 Mg C ha?1 in biofuel crop ecosystems. When switching from food crops to Miscanthus, the per unit area croplands produced a larger amount of ethanol than that of original food crops. In comparison, the land use change from wheat to Miscanthus produced more biomass and sequestrated more carbon. Our study suggests that Miscanthus could better serve as an energy crop than food crops or switchgrass, considering both economic and environmental benefits.  相似文献   
157.
Concomitant changes of annual precipitation and its seasonal distribution within the context of global climate change have dramatic impacts on aboveground net primary productivity (ANPP) of grassland ecosystems. In this study, combining remote sensing products with in situ measurements of ANPP, we quantified the effects of mean annual precipitation (MAP) and precipitation seasonal distribution (PSD) on the spatial variations in ANPP along a climate gradient in Eurasian temperate grassland. Our results indicated that ANPP increased exponentially with MAP for the entire temperate grassland, but linearly for a specific grassland type, i.e. the desert steppe, typical steppe, and meadow steppe from arid to humid regions. The slope of the linear relationship appeared to be steeper in the more humid meadow steppe than that in the drier typical and desert steppes. PSD also had significant effect on the spatial variations in ANPP. It explained 39.4% of the spatial ANPP for the entire grassland investigated, being comparable with the explanatory power of MAP (40.0%). On the other hand, the relative contribution of PSD and MAP is grassland type specific. MAP exhibited a much stronger explanatory power than PSD for the desert steppe and the meadow steppe at the dry and wet end, respectively. However, PSD was the dominant factor affecting the spatial variation in ANPP for the median typical steppe. Our results imply that altered pattern of PSD due to climate change may be as important as the total amount in terms of effects on ANPP in Eurasian temperate grassland.  相似文献   
158.
Aim To develop and test a simple climate‐based ecophysiological model of above‐ground biomass – an approach that can be applied directly to predicting the effects of climate change on forest carbon stores. Location Humid lowland forests world‐wide. Methods We developed a new approach to modelling the aboveground biomass of old‐growth forest (AGBmax) based on the influences of temperature on gross primary productivity (GPP) and what we call total maintenance cost (TMC), which includes autotrophic respiration as well as leaf, stem and other plant construction required to maintain biomass. We parameterized the models with measured carbon fluxes and tested them by comparing predicted AGBmax with measured AGB for another 109 old‐growth sites. Results Our models explained 57% of the variation in GPP across 95 sites and 79% of the variation in TMC across 17 sites. According to the best‐fit models, the ratio of GPP to maintenance cost per unit biomass (MCB) peaks at 16.5 °C, indicating that this is the air temperature leading to the highest possible AGBmax when temperatures are constant. Seasonal temperature variation generally reduces predicted AGBmax, and thus maritime temperate climates are predicted to have the highest AGBmax. The shift in temperatures from temperate maritime to tropical climates increases MCB more than GPP, and thus decreases AGBmax. Overall, our model explains exactly 50% of the variation in AGB among humid lowland old‐growth forests. Main conclusions Temperature plays an important role in explaining global variation in biomass among humid lowland old‐growth forests, a role that can be understood in terms of the dual effects of temperature on GPP and TMC. Our simple model captures these influences, and could be an important tool for predicting the effects of climate change on forest carbon stores.  相似文献   
159.
Two-month-old seedlings of Sophora davidii were subjected to a randomized complete block design with three water (80, 40, and 20 % of water field capacity, i.e. FC80, FC40, and FC20) and three N supply [N0: 0, Nl: 92 and Nh: 184 mg(N) kg−1(soil)] regimes. Water stress produced decreased leaf area (LA) and photosynthetic pigment contents, inhibited photosynthetic efficiency, and induced photodamage in photosystem 2 (PS2), but increased specific leaf area (SLA). The decreased net photosynthetic rate (P N) under medium water stress (FC40) compared to control (FC80) might result from stomatal limitations, but the decreased P N under severe water deficit (FC20) might be attributed to non-stomatal limitations. On the other hand, N supply could improve photosynthetic capacity by increasing LA and photosynthetic pigment contents, and enhancing photosynthetic efficiency under water deficit. Moreover, N supply did a little in alleviating photodamages to PS2 caused by water stress. Hence water stress was the primary limitation in photosynthetic processes of S. davidii seedlings, while the photosynthetic characters of seedlings exhibited positive responses to N supply. Appropriate N supply is recommended to improve photosynthetic efficiency and alleviate photodamage under water stress.  相似文献   
160.
Photosynthetic parameters, growth, and pigment contents were determined during expansion of the fourth leaf of in vitro photoautotrophically cultured Nicotiana tabacum L. plants at three irradiances [photosynthetically active radiation (400–700 nm): low, LI 60 μmol m−2 s−1; middle, MI 180 μmol m−2 s−1; and high, HI 270 μmol m−2 s−1]. During leaf expansion, several symptoms usually accompanying leaf senescence appeared very early in HI and then in MI plants. Symptoms of senescence in developing leaves were: decreasing chlorophyll (Chl) a+b content and Chl a/b ratio, decreasing both maximum (FV/FM) and actual (ΦPS2) photochemical efficiency of photosystem 2, and increasing non-photochemical quenching. Nevertheless, net photosynthetic oxygen evolution rate (P N) did not decrease consistently with decrease in Chl content, but exhibited a typical ontogenetic course with gradual increase. P N reached its maximum before full leaf expansion and then tended to decline. Thus excess irradiance during in vitro cultivation did not cause early start of leaf senescence, but impaired photosynthetic performance and Chl content in leaves and changed their typical ontogenetic course.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号