首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   43107篇
  免费   2977篇
  国内免费   6112篇
  2024年   177篇
  2023年   846篇
  2022年   1116篇
  2021年   1407篇
  2020年   1377篇
  2019年   1908篇
  2018年   1588篇
  2017年   1377篇
  2016年   1338篇
  2015年   1295篇
  2014年   2042篇
  2013年   2827篇
  2012年   1638篇
  2011年   1883篇
  2010年   1470篇
  2009年   1932篇
  2008年   1920篇
  2007年   2141篇
  2006年   1867篇
  2005年   1765篇
  2004年   1511篇
  2003年   1449篇
  2002年   1356篇
  2001年   1055篇
  2000年   938篇
  1999年   907篇
  1998年   870篇
  1997年   792篇
  1996年   706篇
  1995年   699篇
  1994年   662篇
  1993年   664篇
  1992年   614篇
  1991年   626篇
  1990年   503篇
  1989年   488篇
  1988年   467篇
  1987年   396篇
  1986年   429篇
  1985年   625篇
  1984年   723篇
  1983年   399篇
  1982年   597篇
  1981年   562篇
  1980年   480篇
  1979年   347篇
  1978年   241篇
  1977年   266篇
  1976年   237篇
  1973年   181篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
211.
Modeling long-term crop response to fertilizer and soil nitrogen   总被引:1,自引:1,他引:0  
A simple nitrogen balance model to calculate long-term changes in soil organic nitrogen, nitrogen uptake by the crop and recovery of applied nitrogen, is presented. It functions with time intervals of one year or one growing season. In the model a labile and a stable pool of soil organic nitrogen are distinguished. Transfer coefficients for the various inputs of nitrogen are established that specify the fractions taken up by the crop, lost from the system, and incorporated in soil organic nitrogen. It is shown how input data, model parameters and initial pool sizes can be derived and how the model can be used for calculating long-term changes in total soil organic nitrogen and uptake by the crop. For nitrogen applied annually as fertilizer or organic material the time course of nitrogen uptake and recovery of applied nitrogen is calculated. To test the sensitivity of the model, calculations have been performed for different environmental conditions with higher or lower risks for losses. The model has also been applied to establish fertilizer recommendations for a certain target nitrogen uptake by the crop. Finally, for agricultural systems where periods of cropping alternate with peroids of green fallow the time course of nitrogen uptake by the crop is calculated.  相似文献   
212.
This paper presents information about the release of nitrogen and phosphorus from dying grass roots and the capture of phosphorus by other, living plants. We have paid particular attention to the part played by mycorrhizas in this phosphorus capture, and the possible importance of mycorrhizal links between dying and living roots.WhenLolium perenne plants were grown with ample nutrients and their roots then detached and buried in soil, about half the nitrogen and two-thirds of the phosphorus was lost in three weeks, but only one-fifth of the dry weight. The C:N and C:P ratios suggest that microbial growth in the roots would at first be C-limited but would become N- and P-limited within three weeks.Rapid transfer of32P can occur from dying roots to those of a living plant if the two root systems are intermingled. The amount transferred was substantially increased in two species-combinations that are known to form mycorrhizal links between their root systems. In contrast, in a species-combination where only the living (receiver) plant could become mycorrhizal no significant increase of32P transfer occurred. This evidence, although far from conclusive, suggests that mycorrhizal links between dying and living roots can contribute to nutrient cycling. This research indicates a major difference in nutrient cycling processes between perennial and annual crops.  相似文献   
213.
When young wheat (Triticum aestivum L.) or barley (Hordeum vulgare L.) plants were deprived of an external sulphate supply (-S plants), the capacity of their roots to absorb sulphate, but not phosphate or potassium, increased rapidly (derepression) so that after 3–5 d it was more than tenfold that of sulphate-sufficient plants (+S plants). This increased capacity was lost rapidly (repression) over a 24-h period when the sulphate supply was restored. There was little effect on the uptake of L-methionine during de-repression of the sulphate-transport system, but S input from methionine during a 24-h pretreatment repressed sulphate influx in both+S and-S plants.Sulphate influx of both+S and-S plants was inhibited by pretreating roots for 1 h with 4,4-diisothiocyanatostilbene-2,2-disulphonic acid (DIDS) at concentrations > 0.1 mol · m-3. This inhibition was substantially reversed by washing for 1 h in DIDS-free medium before measuring influx. Longer-term pretreatment of roots with 0.1 mol·m-3 DIDS delayed de-repression of the sulphatetransport system in-S plants but had no influence on+S plants in 3 d.The sulphydryl-binding reagent, n-ethylmaleimide, was a very potent inhibitor of sulphate influx in-S roots, but was much less inhibitory in +S roots. Its effects were essentially irreversible and were proportionately the same at all sulphate concentrations within the range of operation of the high-affinity sulphate-transport system. Inhibition of influx was 85–96% by 300 s pretreatment by 0.3 mol·m-3 n-ethylmaleimide. No protection of the transport system could be observed by including up to 50 mol·m-3 sulphate in the n-ethylmaleimide pre-treatment solution. A similar differential sensitivity of-S and+S plants was seen with p-chloromercuriphenyl sulphonic acid.The arginyl-binding reagent, phenylglyoxal, supplied to roots at 0.25 or 1 mol·m-3 strongly inhibited influx in-S wheat plants (by up to 95%) but reduced influx by only one-half in+S plants. The inhibition of sulphate influx in-S plants was much greater than that of phosphate influx and could not be prevented by relatively high (100 mol·m-3 sulphate concentrations accompanying phenylglyoxal treatment. Effects of phenylglyoxal pretreatment were unchanged for at least 30 min after its removal from the solution but thereafter the capacity for sulphate influx was restored. The amount of new carrier appearing in-S roots was far greater than in+S roots over a 24-h period.The results indicate that, in the de-repressed state, the sulphate transporter is more sensitive to reagents binding sulphydryl and arginyl residues. This suggests a number of strategies for identifying the proteins involved in sulphate transport.Abbreviations DIDS 4,4-diisothiocyanatostilbene-2,2-disulphonic acid - NEM n-ethylmaleimide - PCMBS p-chloromercuriphenyl sulphonic acid  相似文献   
214.
Nitrate reduction in roots and shoots and exchange of reduced N between organs were quantitatively estimated in intact 13-d-old seedlings of two-row barley (Hordeum vulgare L. cv. Daisengold) using the 15N-incorporation model (A. Gojon et al. (1986) Plant Physiol. 82, 254–260), except that NH + 4 was replaced by NO - 2 . N-depleted seedlings were exposed to media containing both nitrate (1.8 mM) and nitrite (0.2 mM) under a light-dark cycle of 12:12 h at 20°C; the media contained different amounts of 15N labeling. Experiments were started either immediately after the beginning (expt. 1) or immediately prior to the end (expt. 2) of the light period, and plants were sampled subsequently at each light-dark transition throughout 36 h. The plants effectively utilized 15NO - 3 and accumulated it as reduced 15N, predominantly in the shoots. Accumulation of reduced 15N in both experiments was nearly the same at the end of the experiment but the accumulation pattern in roots and shoots during each 12-h period differed greatly depending on time and the light conditions. In expt. 1, the roots accounted for 31% (light), 58% (dark), and 9% (light) of nitrate reduction by the whole plants, while in expt. 2 the contributions of the root were 82% (dark), 20% (light), and 29% (dark), during each of the three 12-h periods. Xylem transport of nitrate drastically decreased in the dark, but that of reduced N rather increased. The downward translocation of reduced 15N increased while nitrate reduction in the root decreased, whereas upward translocation decreased while nitrate reduction in the shoot increased. We conclude that the cycling of reduced N through the plant is important for N feeding of each organ, and that the transport system of reduced N by way of xylem and phloem, as well as nitrate reduction by root and shoot, can be modulated in response to the relative magnitude of reduced-N demands by the root and shoot, with the one or the other predominating under different circumstances.Symbols Anl accumulation of reduced 15N from 15NO - 3 in 14NO - 3 -fed roots of divided root system - Ar accumulation in root of reduced 15N from 15NO - 3 - As accumulation in shoot of reduced 15N from 15NO - 3 - Rr 15NO - 3 reduction in root - Rs 15NO - 3 reduction in shoot - Tp translocation to root of shoot-reduced 15N from 15NO - 3 in phloem - Tx translocation to shoot of root-reduced 15N from 15NO - 3 in xylem  相似文献   
215.
This study was undertaken in order to demonstrate the extent to which the activity of the plasmalemma H+-ATPase compensates for the charge and acidity flow caused by the sugar-proton symport in cells of chlorella vulgaris Beij.. Detailed analysis of H+ and K+ fluxes from and into the medium together with measurements of respiration, cytoplasmic pH, and cellular ATP-levels indicate three consecutive phases after the onset of H+ symport. Phase 1 occurred immediately after addition of sugar, with an uptake of H+ by the hexoseproton symport and charge compensation by K+ loss from the cells and, to a smaller degree, by loss of another ion, probably a divalent cation. This phase coincided with strong membrane depolarization. Phase 2 started approximately 5 s after addition of sugar, when the acceleration of the H+-ATPase caused a slow-down of the K+ efflux, a decrease in the cellular ATP level and an increase in respiration. The increased respiration was most probably responsible for a pronounced net acidification of the medium. This phase was inhibited in deuterium oxide. In phase 3, finally, a slow rate of net H+ uptake and K+ loss was established for several further minutes, together with a slight depolarization of the membrane. There was hardly any pH change in the cytoplasm, because the cytoplasmic buffering capacity was high enough to stabilize the pH for several minutes despite the net H+ fluxes. The quantitative participation of the several phases of H+ and K+ flow depended on the pH of the medium, the ambient Ca2+ concentration, and the metabolic fate of the transported sugar. The results indicate that the activity of the H+-ATPase never fully compensated for H+ uptake by the sugar-symport system, because at least 10% of symport-caused charge inflow was compensated for by K+ efflux. The restoration of pH in the cytoplasm and in the medium was probably achieved by metabolic reactions connected to increased glycolysis and respiration.Abbreviations DMO dimethyloxazolidinedione - EDTA ethylcnediaminetetraacetic acid - p.c. packed cell volume  相似文献   
216.
Shape variations in the dentition and the cranium were analyzed for sevenSaguinus forms of the hairy-face tamarin by applying the factor analysis method. The results obtained for the dental and cranial measurements were almost consistent with each other. The magnitude of the difference in shape factors between theS. nigricollis group and theS. midas group is appreciably larger than that between the former group and theS. mystax group. If the ancestral geographic centre of origin is postulated as being within the region which is inhabited by the livingS. nigricollis group, the morphological distances between any pairs of groups correlate well with the geographic distances between them. Concerning the dental and cranial morphologies, the physical changes in the three species group probably took place in two directions; that is, from theS. nigricollis group to theS. mystax group, and from theS. nigricollis group to theS. midas group. The forms belonging to each species group are more closely related to each other, with the exception ofS. imperator in theS. mystax group. The uniqueness ofS. imperator was clearly demonstrated by factor analysis and distance analysis. In theS. mystax group, although still hypothetical,S. imperator may have been related only through the basic ancestral stock toS. labiatus andS. mystax.  相似文献   
217.
Summary A direct comparison of microspore culture and anther culture was made in Brassica napus using F1 crosses of Regent (canola) by Golden (rapeseed), and their reciprocals, as well as a hybrid between Reston and a highly embryogenic, canola-quality breeding line (G231) as donor plants. The study confirmed that microspore culture can be ten times more efficient than anther culture for embryo production. Embryo yields from cultures initiated from the Reston x G231 were four-fold greater than those initiated from the Regent x Golden crosses, and significant differences were also detected among cultures initiated from the different Regent x Golden crosses. These results illustrate the influence that donor plant genotype has on embryo production. However, superior embryogenic potential among donor material was not always coincident with superior plant production. The average haploid-todiploid ratio in microspore-derived regenerates was 21 for the population obtained from the Regent x Golden crosses but 11 for the Reston x G231 cross. For both types of material, the frequency of diploids increased upon repeated cycles of explanting. A field study showed that there were no differences between the populations of anther-derived and microspore-derived spontaneous diploid and doubled haploid lines, with respect to the days required for them to flower or to mature. The information is valuable for canola breeding programs considering the use of haploidy.  相似文献   
218.
When cells of the unicellular green alga Chlamydomonas reinhardtii were subjected to microwave irradiation at 2.45 GHz, nitrite uptake kinetics still obeyed the Michaelis-Menten equation, the Km of the process remaining constant, whereas V max increased, which indicates an enhanced nonthermal permeability in irradiated cells.  相似文献   
219.
Erythrina lectins possess similar structural and carbohydrate binding properties. Recently, tri- and tetra-antennary complex type carbohydrates with non-reducing terminal galactose residues have been shown to be precipitated as tri- and tetravalent ligands, respectively, with certainErythrina lectins [Bhattacharyya L, Haraldsson M, Brewer CF (1988) Biochemistry 271034-41]. The present work describes a comparative study of the binding and precipitating activities of fourErythrina lectins,viz. E. corallodendron, E. cristagalli, E. flabelliformis, andE. indica, with multi-antennary complex type carbohydrates and synthetic cluster glycosides. The results show that though their binding affinities are very similar, theErythrina lectins show large differences in their precipitating activities with the carbohydrates. The results also indicate significant dependence of the precipitating activities of the lectins on the core structure of the carbohydrates. These findings provide a new dimension to the structure-activity relationship of the lectins and their interactions with asparagine-linked carbohydrates.Abbreviations EAL, ECorL, ECL, EFL, and EIL represent the lectins from the seeds ofErythrina arborescens, - E. corallodendron, E. cristagalli, E. flabelliformis, andE. indica respectively - AFOS thetri-antennary complex type oligosaccharide from asialofetuin - AFGP the tri-antennary glycopeptide from asialofetuin - MeGal methyl -d-galactopyranoside Unless stated otherwise all sugars are in thed-configuration.  相似文献   
220.
Abstract Net nitrate uptake rates were measured and the kinetics calculated in non-nodulated Pisum sativum L. cv. Marma and Lemna gibba L. adapted to constant relative rates of nitrate-N additions (RA), ranging from 0.03 to 0.27 d?1 for Pisum and from 0.05 to 0.40 d?1 for Lemna, Vmax of net nitrate uptake (measured in the range 10 to 100 mmol m?3 nitrate, i.e. ‘system I’) increased with RA in the growth limiting range but decreased when RA exceeded the relative growth rate (RGR), Km was not significantly related to changes in RA. On the basis of previous 13N-flux experiments, it is concluded that the differences in Vmax at growth limiting RA are attributable to differences in influx rates. Linear relationships between Vmax and tissue nitrogen concentrations were obtained in the growth limiting range for both species, and extrapolated intercepts relate well with the previously defined minimal nitrogen concentrations for plant growth (Oscarson, Ingemarsson & Larsson, 1989). Analysis of Vmax for net nitrate uptake on intact plant basis in relation to nitrogen demand during stable, nitrogen limited, growth shows an increased overcapacity at lower RA values in both species, which is largely explained by the increased relative root size at low RA. A balancing nitrate concentration, defined as the steady state concentration needed to sustain the relative rate of increase in plant nitrogen (RN), predicted by RA, was calculated for both species. In the growth limiting range, this value ranges from 3.5 mmol m?3 (RA 0.03 d?1) to 44 mmol m?3 (RA 0.21 d?1) for Pisum and from 0.2 mmol m?3 (RA 0.05 d?1) to 5.4 mmol m?3 (RA 0.03 d?1) for Lemna. It is suggested that this value can be used as a unifying measure of the affinity for nitrate, integrating the performance of the nitrate uptake system with nitrate flux and long term growth and demand for nitrogen.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号