首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3000篇
  免费   305篇
  国内免费   827篇
  4132篇
  2024年   14篇
  2023年   64篇
  2022年   98篇
  2021年   126篇
  2020年   154篇
  2019年   153篇
  2018年   147篇
  2017年   117篇
  2016年   136篇
  2015年   135篇
  2014年   149篇
  2013年   182篇
  2012年   114篇
  2011年   145篇
  2010年   99篇
  2009年   122篇
  2008年   115篇
  2007年   156篇
  2006年   132篇
  2005年   167篇
  2004年   119篇
  2003年   125篇
  2002年   141篇
  2001年   127篇
  2000年   84篇
  1999年   100篇
  1998年   67篇
  1997年   84篇
  1996年   68篇
  1995年   73篇
  1994年   67篇
  1993年   82篇
  1992年   68篇
  1991年   47篇
  1990年   56篇
  1989年   50篇
  1988年   44篇
  1987年   32篇
  1986年   21篇
  1985年   27篇
  1984年   23篇
  1983年   11篇
  1982年   27篇
  1981年   23篇
  1980年   10篇
  1979年   9篇
  1977年   6篇
  1976年   3篇
  1975年   3篇
  1958年   4篇
排序方式: 共有4132条查询结果,搜索用时 15 毫秒
61.
At two sites, one with a 4-year-old (4-Y) secondary vegetation and the other with a 20-year-old (20-Y) vegetation, the influence of burning slashed vegetation on crop performance was studied during three seasons. In the first season after clearing, also the influence on weed growth was studied. At both sites, burning significantly decreased the number of weed seedlings. The lowest number of seedlings was found on the burnt plots of the 20-Y site. Burning increased yield and nutrient uptake significantly in the first and second season after clearing. In the third season after burning, only at the 4-Y site a significantly higher yield and nutrient uptake were found. At the 20-Y site the effect had disappeared. Calculations of efficiency of utilization of absorbed N, P and K indicated that P was the least available nutrient, also after burning. At both sites three consecutive crops absorbed approximately 40% of P applied in ash, while the cumulative recovery of K was at least 36% at the 4-Y site and at least 59% at the 20-Y site. On non-burnt plots, yields were not lower in the third season than in the first season after clearing, thus indicating that the inherent soil fertility did not decrease. Hence, yield decline on the burnt plots could be ascribed to ash depletion. It was concluded that in the local shifting cultivation system, the combination of ash depletion and infestation of weeds are the main reasons for abandoning the fields.  相似文献   
62.
Geert van Wirdum 《Hydrobiologia》1993,265(1-3):129-153
A survey of base-rich wetlands in The Netherlands is presented. The main area of their occurrence is the low-lying Holocene part of the country, until some thousand years ago a large and coherent wetland landscape: the Holland wetland. The development of various parts of the Holland wetland into marshes, fens and bogs can be understood from hydrological relations in mire basins, as recognized in the distinction of primary, secondary and tertiary mire basin stages. Presently, the remnants of the Holland wetland are separate base-rich wetlands. The succession of their vegetation reflects various abiotic conditions and human influences. Three main developmental periods are distinguished as regards these factors. The first, geological period of mire development is seen as a post-glacial relaxation, with the inertia due to the considerable mass of wetland as a stabilizing factor. Biological “grazing” influences, as an aspect of utilization by humans, converted base-rich wetlands to whole new types in the second, historical period. Presently, mass and harvesting have decreased in importance, and actual successions in terrestrializing turbaries seem to reflect rapidly changing environmental conditions. Human control could well become the most important factor in the future development of wetland nature. The present value of open fen vegetation strongly depends on the continuation of the historical harvesting. The development of wooded fen may help to increase the mass of wetland in the future. Best results in terms of biodiversity are expected when their base state is maintained through water management. The vegetation and hydrology of floating fens in terrestrializing turbaries is treated in some more detail. Various lines and phases in the succession are distinguished. Open fen vegetation at base-rich, yet nutrient-poor sites is very rich in species threatened elsewhere. The fast acidification of certain such fens is attributed to hydrological and management factors. This acidification is illustrated in the profile of a floating raft sample. At the scale of these small fens, the elemental structure comprising base-rich fen, transitional fen and bog vegetation, is not as stable as it was in the large Holland wetland. A critical role seems to be played by the supply of bases with the water influx. The changing base state is supposed to change the nutrient cycling to such an extent that it would be correct to call this trophic excitation of the ecosystem, rather than just eutrophication. Eutrophication indicates a quantitative reaction to an increased nutrient supply, the internal system being unaltered. The drainage of fens, resulting in an increased productivity of the vegetation, provides another example of excitation, to the effect that the functional system is dramatically changed internally.  相似文献   
63.
Retention of nitrogen in small streams artificially polluted with nitrate   总被引:3,自引:0,他引:3  
A simple method was developed to test hypotheses on nitrogen retention in first-order streams in an agricultural region near Oslo, SE Norway. A gravity-operated system added a nitrate solution to the streams continuously at a constant rate. Water samples were collected at fixed intervals downstream to follow the rate of decline in streamwater nitrate. Repeated sampling allowed calculation of regression lines from experiments with different levels of additions of nitrate.The experiments showed that removal of nitrate generally increased with higher initial nitrate concentration, regardless of temperature (range 8–16 °C). Higher nitrate removal rates were found in a stream polluted by easily degradable organic matter than in a similar stream fed by groundwater.Experiments conducted in indoor channels lined with a layer of stream sediment gave reproducible, exponential rates of nitrate decrease in the recirculated water.The results are discussed in the framework of first-order streams as protective ecotones between agricultural areas and higher-order parts of the watersheds.  相似文献   
64.
Mineralization of dissolved organic matter (DOM) in thermokarst lakes plays a non-negligible role in the permafrost carbon (C) cycle, but remains poorly understood due to its complex interactions with external C and nutrient inputs (i.e., aquatic priming and nutrient effects). Based on large-scale lake sampling and laboratory incubations, in combination with 13C-stable-isotope labeling, optical spectroscopy, and high-throughput sequencing, we examined large-scale patterns and dominant drivers of priming and nutrient effects of DOM biodegradation across 30 thermokarst lakes along a 1100-km transect on the Tibetan Plateau. We observed that labile C and phosphorus (P) rather than nitrogen (N) inputs stimulated DOM biodegradation, with the priming and P effects being 172% and 451% over unamended control, respectively. We also detected significant interactive effects of labile C and nutrient supply on DOM biodegradation, with the combined labile C and nutrient additions inducing stronger microbial mineralization than C or nutrient treatment alone, illustrating that microbial activity in alpine thermokarst lakes is co-limited by both C and nutrients. We further found that the aquatic priming was mainly driven by DOM quality, with the priming intensity increasing with DOM recalcitrance, reflecting the limitation of external C as energy sources for microbial activity. Greater priming intensity was also associated with higher community-level ribosomal RNA gene operon (rrn) copy number and bacterial diversity as well as increased background soluble reactive P concentration. In contrast, the P effect decreased with DOM recalcitrance as well as with background soluble reactive P and ammonium concentrations, revealing the declining importance of P availability in mediating DOM biodegradation with enhanced C limitation but reduced nutrient limitation. Overall, the stimulation of external C and P inputs on DOM biodegradation in thermokarst lakes would amplify C-climate feedback in this alpine permafrost region.  相似文献   
65.
Migration is ubiquitous and can strongly shape food webs and ecosystems. Less familiar, however, is that the majority of life cycle, seasonal and diel migrations in nature are partial migrations: only a fraction of the population migrates while the other individuals remain in their resident ecosystem. Here, we demonstrate different impacts of partial migration rendering it fundamental to our understanding of the significance of migration for food web and ecosystem dynamics. First, partial migration affects the spatiotemporal distribution of individuals and the food web and ecosystem-level processes they drive differently than expected under full migration. Second, whether an individual migrates or not is regularly correlated with morphological, physiological, and/or behavioural traits that shape its food-web and ecosystem-level impacts. Third, food web and ecosystem dynamics can drive the fraction of the population migrating, enabling the potential for feedbacks between the causes and consequences of migration within and across ecosystems. These impacts, individually and in combination, can yield unintuitive effects of migration and drive the dynamics, diversity and functions of ecosystems. By presenting the first full integration of partial migration and trophic (meta-)community and (meta-)ecosystem ecology, we provide a roadmap for studying how migration affects and is affected by ecosystem dynamics in a changing world.  相似文献   
66.
Abstract. To document the relationship between a plant's position in the canopy and its leaf nutrient content, leaf nitrogen and phosphorus were determined for 30 species growing in mature evergreen lowland rain forest at La Selva Biological Station, Costa Rica. Species that grow either in the understory, midstory, or the canopy were selected. Species were further separated into three life forms: self-supporting monocots, self-supporting dicots, and climbers. Mass-based nutrient concentrations were expected to decrease with stature, as has been reported in studies of other forests. In fact, mass-based nitrogen and phosphorus did not vary significantly among the three adult-stature classes, although area-based values differed greatly: canopy plants averaged 60 % more nitrogen and 90 % more phosphorus per unit leaf area than understory plants. Differences in leaf characteristics were evident among the three life forms. Most notably, area-based phosphorus and leaf specific mass were lowest in climbers, intermediate in self-supporting dicots, and highest in self-supporting monocots. These results support the characterization of climbers as investing in inexpensive structures, perhaps in order to gain competitive advantage in light capture by allocating resources to maximize elongation rates.  相似文献   
67.
The short-term stimulation of the net rate of carbon dioxide exchange of leaves by elevated concentrations of CO2 usually observed in C3 plants sometimes does not persist. Experiments were conducted to test whether the patterns of response to the environment during growth were consistent with the hypotheses that photosynthetic adjustment to elevated CO2 concentration is due to (1) feedback inhibition or (2) nutrient stress. Soybean [Glycine max (L.) Merr. cv. Williams] and sugar beet (Best vulgaris L. cv. Mono Hye-4) were grown from seed at 350 and 700 μl? CO2, at 20 and 25°C, at a photon flux density of 0.5 and 1.0 mmol m?2 S?1 and with three nutrient regimes until the third trifoliolate leaf of soybean or the sixth leaf of sugar beet had finished expanding. Net rates of CO2 exchange of the most recently expanded leaves were then measured at both 350 and 700 μl 1?1 CO2. Plants grown at the elevated CO2 concentration had net rates of leaf CO2 exchange which were reduced by 33% in sugar beet and 23% in soybean when measured at 350 μl 1?1 CO2 and when averaged over all treatments. Negative photosynthetic adjustment to elevated CO2 concentration was not greater at 20 than at 25°C, was not greater at a photon flux density of 1.0 than at 0.5 mmol m?2 S?1 and was not greater with limiting nutrients. Furthermore, in soybean, negative photosynthetic adjustment could be induced by a single night at elevated CO2 concentration, with net rates of CO2 exchange the next day equal to those of leaves of plants grown from seed at the elevated concentration of CO2. These patterns do not support either the feedback-inhibition or the nutrient-stress hypothesis of photosynthetic adjustment to elevated concentrations of CO2.  相似文献   
68.
Blood metabolites and urea kinetics were determined in starveling elephant seal pups to assess the transition to stage III fasting in this fasting-adapted species. Five postmolt and two premolt starvelings, denned as having a mass <50 kg, were studied until death or departure to sea. Premolt starvelings died on the rookery while postmolt starvelings departed to sea. Increased mass loss and a significant inverse relationship between mass and the ratio of blood urea nitrogen to creatinine suggested that premolt starvelings had enrered stage III starvation prior to death while urea kinetics suggested that postmolt pups engaged stage III starvation prior to departure. The mean rate of protein catabolism was estimated at 19.4 g/d for departing starvelings, twice the absolute rate and about four times the mass-specific rate estimated in healthy weanlings after eight weeks of fasting. Three starvelings stranded after departure, possibly as a result of thermoregulatory challenges and inefficient dive behavior. Entrance into stage III fasting interrupts the development of diving in emaciated pups (<50 kg) suggesting that an increased rate of protein catabolism might be linked to the cue to forage. This biochemical trigger is possibly different than the cue to feed in healthy weanlings, which depart the rookery with substantial fat stores.  相似文献   
69.
An optimized soy-based medium was developed for ethanol production byEscherichia coli KO11. The medium consists of mineral salts, vitamins, crude enzymatic hydrolysate of soy and fermentable sugar. Ethanol produced after 24 h was used as an endpoint in bioassays to optimize hydrolysate preparation. Although longer fermentation times were required with soy medium than with LB medium, similar final ethanol concentrations were achieved (44–45 g ethanol L–1 from 100 g glucose L–1). The cost of materials for soy medium (excluding sugar) was estimated to be $0.003 L–1 broth, $0.006 L–1 ethanol.  相似文献   
70.
The currently widespread abandoning of agricultural land use in Western Europe offers new opportunities for ecological restoration and nature conservation. This is illustrated for abandoned arable fields and for permanent grasslands cut for hay after the cessation of fertilizer application. Although initiated by a sudden reduction of nutrient input to the system, the changing nutrient supply from the soil is considered to be the main driving force of succession. The soil nutrient supply is affected by soil organisms, both directly (root symbionts and herbivores) and indirectly (nutrient mineralization from dead organic matter). It is argued that because of the close association of changes in species diversity with changes in the functioning of ecosystems, biodiversity has to be studied in an ecosystem ecology context.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号