首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4072篇
  免费   338篇
  国内免费   859篇
  5269篇
  2024年   14篇
  2023年   76篇
  2022年   116篇
  2021年   150篇
  2020年   191篇
  2019年   190篇
  2018年   169篇
  2017年   149篇
  2016年   172篇
  2015年   185篇
  2014年   197篇
  2013年   249篇
  2012年   151篇
  2011年   200篇
  2010年   133篇
  2009年   165篇
  2008年   184篇
  2007年   234篇
  2006年   168篇
  2005年   211篇
  2004年   157篇
  2003年   161篇
  2002年   169篇
  2001年   148篇
  2000年   104篇
  1999年   125篇
  1998年   91篇
  1997年   103篇
  1996年   86篇
  1995年   84篇
  1994年   82篇
  1993年   94篇
  1992年   82篇
  1991年   53篇
  1990年   63篇
  1989年   52篇
  1988年   50篇
  1987年   35篇
  1986年   30篇
  1985年   33篇
  1984年   30篇
  1983年   16篇
  1982年   36篇
  1981年   30篇
  1980年   15篇
  1979年   11篇
  1977年   7篇
  1976年   3篇
  1975年   4篇
  1958年   4篇
排序方式: 共有5269条查询结果,搜索用时 10 毫秒
11.
Abstract: This study focuses on the sex ratio and spatial distribution of males and females in three populations of the endemic and restricted tropical dioecious shrub, Baccharis concinna (Asteraceae) in the mountainous region of Serra do Cipó, southeastern Brazil. The proportion of female plants in the population at lower elevation (1000 m a.s.l.) was significantly greater than of male plants. At this elevation of P/N and Ca/Al ratios in the soil were also greater indicating better nutritional status of the soils. The concentration of aluminium increased significantly with the elevation ( p < 0.001), perhaps rendering soils less conducive to female plants at higher elevations. Female plants are possibly adversely affected to a greater extent by soil quality than male plants. The spatial distribution of the populations within habitat was tested by the K(t) function, where the neighbourhood of a given individual was defined by a circle with a radius (t) up to 3 m. Despite the strong tendency for aggregation, the distribution of the sexes within habitats was random and the hypothesis was not supported. The independent distribution of the sexes within habitats may be explained by nutrient homogeneity of the soils, as well as by an absence of antagonism between the sexes. Nevertheless, we found a trend for males and females to be aggregated according to their gender.  相似文献   
12.
13.
14.
For any element which is incorporated into biomass, the biogeochemical cycle of that element in a given ecosystem will be coupled to that of any other element similarly incorporated. The mutual interaction of two such cycles is examined using a simple model in which each cycle is constrained into four compartments. In each cycle the assimilation rate (primary productivity) is related in a non-linear fashion to the two nutrients and to biomass. The interactions are represented by combining a hyperbolic dependence for each nutrient (involving a "Michaelis constant") with a logistic equation governing the dependence of rate on biomass (involving a "carrying capacity"). The response of the model to perturbation (e.g. mobilization of an abiotic reserve) is strongly governed by the values assigned to these constants. The coupled cycles can exhibit positive feed-back with anomalous responses of the steady state and time-dependent solutions may exhibit complex oscillatory behaviour. Both the steady-state sensitivity and the kinetic behaviour of such coupled systems are simplified if the range of atomic ratios permitted by the assimilation process is restricted. It will therefore be of importance to determine under what conditions the assimilation rates for different elements are governed by mass-action effects (Liebig's Law) or by stoichiometric constraints (Redfield ratios).  相似文献   
15.
Seedlings of 14 species were grown for 14–28 days on nutrient solution with 6 mmol.l−1 NH4 as the sole nitrogen source. Solutions acidity was were kept constant at pH 4.0, 5.0, 6.0 and 7.0 by continuous titration with diluted KOH. The following species were used: barley, maize, oats sorghum, yellow and white lupin, pea, soybean, carrot, flax, castor-oil, spinach, sugarbeet and sunflower. Most plant species grew optimally at pH 6.0 with slight reductions at pH 5.0. Growth of many species was severely inhibited at pH 4.0, but this inhibition was not observed with the legume and cereal species. Yield depressions at pH 4.0 relative to pH 6.0 were well correlated with the respective relative decreases of the K concentration in their roots (P<0.002). In the roots of two species (sunflower and flax) total N concentrations were also strongly reduced at pH 4.0. apparently, the interactions between uptake of K, NH4 and H ions become the prevalent problem at suboptimal pH. At pH 7.0, yields were also considerably decreased, with the exception of the lupines. At this pH, the roots of the growth inhibited plants were characterized by increased levels of total N and free NH4. It is thought that the binding capacity of the roots for NH4 is an important factor in preventing NH4/NH3 toxicity at supraoptimal pH.  相似文献   
16.
Plants of Taraxacum sellandii Dahlst., a microspecies adapted to fertile, and Taraxacum nordstedtii Dahlst., adapted to infertile soils, were cultured hydroponically, either on a complete nutrient solution or on one deprived of nitrogen, phosphorus, or potassium ions. For all four treatments, the growth and internal mineral concentration of the plants was monitored. For plants cultured on a complete nutrient solution, the uptake rates of nitrate, phosphate, and potassium ions were determined. Luxury consumption of the three macronutrients was computed as the excess of ion absorption over the ion uptake rates minimally required to sustain maximum growth. In these calculations the critical N, P, or K+ concentrations, earlier derived, were used as parameters describing the mineral status minimally required to allow maximum growth. Efficiency in use of the three macroelements at various levels of mineral accumulation was also computed. Finally, the response to phosphate starvation as related to phosphate uptake capacity and the accumulation of P was investigated.
The physiological properies investigated provide a causal background for the superior adaptation of T. nordstedtii as compared to T. sellandii to infertile sites. Taraxacum nordstedtii had a higher relative luxury consumption of NO3, H2PO-4, and K+, a higher efficiency in N and P use at N– and (severe) P-deficiency, respectively; and, after phosphate starvation, a relatively high preservation of phosphate uptake capacity and an enlargement of P storage. In combination with the low potential growth, luxury consumption will be particularly effective in T. nordstedtii in preventing or minimizing mineral deficiency. The distribution of minerals between cytoplasm and vacuoles as a factor in mineral use efficiency is discussed.  相似文献   
17.
Birch ( Betula pendula Roth.) was investigated under steady-state nutrition and growth at different incident photon flux densities (PFD) and different relative addition rates of nitrogen. PFD had a strong influence on the relative growth rate at optimum nutrition and on the nitrogen productivity (growth rate per unit of nitrogen) but little effect on the formal relationships between nitrogen and growth, i.e. PFD and nitrogen nutrition are orthogonal growth factors. At a given suboptimum nitrogen (the same distance from optimum), increased PFD increased the relative growth rate and, therefore, the relative uptake rate and the required relative addition rate in accordance with the theoretical equality between these three parameters at steady-state nutrition. Correspondingly, at a given suboptimum relative addition rate, increased PFD decreased nitrogen status (larger distance from optimum) at an unchanged relative growth rate. Nutrient uptake rate, dry matter content, and partitioning of biomass and nutrients are strongly influenced by nitrogen status. PFD influences these characteristics, but only to an extent corresponding to its effect on the nitrogen status. The influence of PDF on the relative growth rate at optimum and on nitrogen productivity is well described by hyperbolic relationships, similar to reported PFD/photosynthesis relationships. These expressions for plant growth as well as the productivities of leaf area and quantum appear to be valuable characteristics of plant responses to light and nutrition. Although the calculated PFD/growth relationships indicate saturation at high values of PFD, a more realistic estimate of PFD at which saturation occurs is about 30 mol m−2 day−1, where the highest relative growth rate and nitrogen productivity were experimentally determined. No significant effect was observed because of day length differences between the present and previous experiments.  相似文献   
18.
Near a hen house (50–600 m), vitality ofPinus sylvestris, N-, P-, K-, Ca-, Mg-contents of the needles, N-, Mg-, K-, Ca- and Al-contents in soil extracts and NH3/NH 4 + -contents of the air were determined. Damage symptoms occurred when N-immissions hit the canopy directly. In contrast no visible decline of the above ground plant could be observed if N was mainly deposited on the soil.  相似文献   
19.
Of the biogeochemical processes, denitrification has perhaps been the most difficult to study in the field because of the inability to measure the product of the process. The last decade of research, however, has provided both acetylene and15N based methods as well as undisturbed soil core andin situ soil cover sampling approaches to implementing these methods. All of these methods, if used appropriately, give comparable results. Thus, we now have several methods, each with advantages for particular sites or objectives, that accurately measure denitrification in nature. Because of the general usefulness of the acetylene methods, updated protocols for the following three methods are given: gas-phase recirculation soil cores; static soil cores; and the denitrifying enzyme assay also known as the phase 1 assay. Despite the availability of these and other methods, denitrification budgets remain difficult to accurately establish in most environments because of the high spatial and temporal variability inherent in denitrification. Appropriate analysis of those data includes a distribution analysis of the data, and if highly skewed as is typically the case, the most accurate method to estimate the mean and the population variance is the UMVUE method (uniformly minimum variance unbiased estimator). Geostatistical methods have also been employed to improve spatial and temporal estimates of denitrification. These have occasionally been successful for spatial analysis but in the attempt described here for temporal analysis the approach was not useful.Discussions of the importance of denitrification have always focused on quantifying the process and whether particular measured quantities are judged to be a significant amount of nitrogen. A second line of evidence discussed here is the extant genetic record that results from natural selection. These analysis lead to the conclusion that strong selection for denitrification must currently be occurring, which implies that the process is of general significance in soils.  相似文献   
20.
This paper presents information about the release of nitrogen and phosphorus from dying grass roots and the capture of phosphorus by other, living plants. We have paid particular attention to the part played by mycorrhizas in this phosphorus capture, and the possible importance of mycorrhizal links between dying and living roots.WhenLolium perenne plants were grown with ample nutrients and their roots then detached and buried in soil, about half the nitrogen and two-thirds of the phosphorus was lost in three weeks, but only one-fifth of the dry weight. The C:N and C:P ratios suggest that microbial growth in the roots would at first be C-limited but would become N- and P-limited within three weeks.Rapid transfer of32P can occur from dying roots to those of a living plant if the two root systems are intermingled. The amount transferred was substantially increased in two species-combinations that are known to form mycorrhizal links between their root systems. In contrast, in a species-combination where only the living (receiver) plant could become mycorrhizal no significant increase of32P transfer occurred. This evidence, although far from conclusive, suggests that mycorrhizal links between dying and living roots can contribute to nutrient cycling. This research indicates a major difference in nutrient cycling processes between perennial and annual crops.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号