首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3062篇
  免费   308篇
  国内免费   839篇
  2024年   14篇
  2023年   65篇
  2022年   104篇
  2021年   131篇
  2020年   158篇
  2019年   160篇
  2018年   154篇
  2017年   120篇
  2016年   137篇
  2015年   138篇
  2014年   157篇
  2013年   186篇
  2012年   118篇
  2011年   145篇
  2010年   100篇
  2009年   128篇
  2008年   119篇
  2007年   156篇
  2006年   134篇
  2005年   170篇
  2004年   124篇
  2003年   126篇
  2002年   143篇
  2001年   126篇
  2000年   86篇
  1999年   100篇
  1998年   67篇
  1997年   84篇
  1996年   68篇
  1995年   73篇
  1994年   68篇
  1993年   82篇
  1992年   69篇
  1991年   47篇
  1990年   56篇
  1989年   50篇
  1988年   44篇
  1987年   32篇
  1986年   21篇
  1985年   26篇
  1984年   22篇
  1983年   11篇
  1982年   26篇
  1981年   23篇
  1980年   10篇
  1979年   9篇
  1977年   6篇
  1976年   3篇
  1975年   3篇
  1958年   4篇
排序方式: 共有4209条查询结果,搜索用时 78 毫秒
51.
Lake Baikal, Russian Siberia, was sampled in July 1990 during the period of spring mixing and initiation of thermal stratification. Vertical profiles of temperature, dissolved nutrients (nitrate and soluble reactive phosphorus), phytoplankton biomass, and primary productivity were determined in an eleven-station transect encompassing the entire 636 km length of the lake. Pronounced horizontal variability in hydrodynamic conditions was observed, with the southern region of the lake being strongly thermally stratified while the middle and north basins were largely isothermal through July. The extent of depletion of surface water nutrients, and the magnitude of phytoplankton biomass and productivity, were found to be strongly correlated with the degree of thermal stratification. Horizontal differences likely reflected the contribution of two important factors: variation in the timing of ice-out in different parts of the lake (driving large-scale patterns of thermal stratification and other limnological properties) and localized effects of river inflows that may contribute to the preliminary stabilization of the water column in the face of intense turbulent spring mixing (driving meso-scale patterns). Examination of the relationships between surface water inorganic N and P depletion suggested that during the spring and early summer, phytoplankton growth in unstratified portions of the lake was largely unconstrained by nutrient supplies. As summer progressed, the importance of co-limitation by both N and P became more apparent. Uptake and regeneration rates, measured directly using the stable isotope 15N, revealed that phytoplankton in stratified portions of the lake relied primarily on NH4 as their N source. Rates of NH4 regeneration were in approximate equilibrium with uptake; both processes were dominated by organisms <2 µm. This pattern is similar to that observed for oligotrophic marine systems. Our study underscores the importance of hydrodynamic conditions in influencing patterns of biological productivity and nutrient dynamics that occur in Lake Baikal during its brief growing season.  相似文献   
52.
Spirulina platensis (= Arthrospira fusiformis) was isolated from Lake Chitu, a saline, alkaline lake in Ethiopia, where it forms an almost unialgal population. Optimum growth conditions were studied in a turbidostat. Cultures grown in modified Zarrouk's medium and exposed to a range of light intensities (20–500 µmol photons m–2s–1) showed a maximum specific growth rate (µmax) of 1.78 d–1. Quantum yield for growth (µ) was 3.8% at the optimum light for growth of 330 µmol photons m–2s–1, and ranged from 2.8 to 9.4%. With increase in irradiance, the chlorophyll a concentration decreased, and the carotenoids/chlorophyll a ratio increased by a factor of 2.4. The phosphorus to carbon ratio (P/C) showed some variation, while the nitrogen to carbon ratio (N/C) remained relatively constant, thus causing fluctuations in the N:P ratio (7–11) of cells. An optimum N:P ratio of about 7 was attained in cells growing at the optimum light for growth. Results from the continuous culture experiments agreed well with maximum values of photosynthetic efficiency given in the literature for natural populations of S. platensis in the soda lakes of East Africa, Lake Arenguade (Ethiopia), and Lake Simbi (Kenya).  相似文献   
53.
Interactive effects of seven years of compaction due to wheel traffic and tillage on root density, formation of arbuscular mycorrhizae, above-ground biomass, nutrient uptake and yield of corn (Zea mays L.) were measured on a coastal plain soil in eastern Alabama, USA. Tillage and soil compaction treatments initiated in 1987 were: 1) soil compaction from tractor traffic with conventional tillage (C,CT), 2) no soil compaction from tractor traffic with conventional tillage (NC,CT), 3) soil compaction from tractor traffic with no-tillage (C,NT), and, 4) no soil compaction from tractor traffic with no-tillage (NC,NT). The study was arranged as a split plot design with compaction from wheel traffic as main plots and tillage as subplots. The experiment had four replications. In May (49 days after planting) and June, (79 days after planting), root biomass and root biomass infected with arbuscular mycorrhizae was higher in treatments that received the NC,NT treatment than the other three treatments. In June and July (109 days after planting), corn plants that received C,CT treatment had less above-ground biomass, root biomass and root biomass infected with mycorrhizae than the other three treatments. Within compacted treatments, plants that received no-tillage had greater root biomass and root biomass infected with mycorrhizae in May and June than plants that received conventional tillage. Corn plants in no-tillage treatments had higher root biomass and root biomass infected with mycorrhizae than those in conventional tillage. After 7 years of treatment on a sandy Southeastern soil, the interactive effects of tillage and compaction from wheel traffic reduced root biomass and root biomass infected with mycorrhizae but did not affect plant nutrient concentration and yield. ei]J H Graham  相似文献   
54.
To assess genotypic variability in nutrient supply of shoot branches, the distribution of 32P and 45Ca exported from a source nodal root (24-h uptake period) was measured within a genotype of a large-leaved (Kopu) and a small-leaved (Tahora) cultivar of Trifolium repens. Source-sink relationships of plants were modified by root severance, defoliation, and shade treatments. In control plants of both genotypes distribution of 32P and 45Ca closely followed the pathways that could be predicted from the known phyllotactic constraints on the vascular system. As such there was little allocation of radioisotopes (3.1% and 2.5% of exported 32P and 45Ca, respectively) from the source root to branches on the apposite side of the parent axis (far-side branches). However, genotypic differences in nutrient allocation were apparent, when treatments were imposed to alter intra-plant source-sink relationships. In the large-leaved genotype, the imposed treatments had minor effects on the allocation to far-side branches: whereas, in the small-leaved genotype, root severance and defoliation treatments increased lateral transport to far-side branches to 30% (32P) and 10% (45Ca) of exported radioisotopes. Genotypes with low (8–9) and high (12–13) numbers of vascular bundles were selected from within the large-leaved cultivar. Distribution of 32P was then measured after plants had been pre-treated by removal of all far-side roots two days prior to labelling. Genotypes with low vascular bundle number allocated 20% and those with high vascular bundle number 3.2% of exported 32P to far-side branches. It was concluded (1) that genotypic variation exists within T. repens for potential to alter intra-plant allocation of mineral nutrients, in response to treatments that modify source-sink relationships within plants; and (2) that this variation is correlated with differences among genotypes in the organisation of the vasculature of their stolons.  相似文献   
55.
In Venezuela, the alien grasses Melinis minutiflora Beauv. and Hyparrhenia rufa (Nees.) Stapf tend to displace the native savanna plant community dominated by Trachypogon plumosus (Humb. and Bonpl.) Nees. This occurs in either relatively wetter and fertile highland savannas or in drier and less fertile lowland savannas. Although the native and aliens are perennial C4 grasses, higher net assimilation leaf biomass per plant and germination rate of the latter are some causes for their higher growth rates and for their competitive success. The objective of this study is to compare seasonal tissue energy, N, P and K concentrations and the calculated construction costs (CC) between the native grass and either one of the alien grasses from lowland and highland savannas. We predict that, in order to out-compete native plants, alien grasses should be more efficient in resource use as evidenced by lower tissue energy and nutrient concentrations and CC.Tissue energy and nutrient concentration were measured throughout the year and compared between M. minutiflora and the co-occurring local population of T. plumosus in a highland savanna and between H. rufa and its neighbor local population of T. plumosus in a lowland savanna. CC was calculated from energy, N and ash concentrations considering ammonium as the sole N source. Differences between co-occurring species, T. plumosus populations, seasons, and organs were analyzed with ANOVA.Highland and lowland grasses differed in concentration and allocation of energy and nutrients whereas the differences between alien and native grasses were specific for each pair considered. Highland grasses had higher energy, N, P and CC than lowland grasses. These variables were always lowest in the culms. In the more stressed lowland site, tissue energy and nutrient concentrations decreased significantly during the dry season except in the roots of both grasses which had the highest energy and nutrients concentrations during the drought. This seasonal response was more marked in the local lowland population of T. plumosus in which maximum CC alternated seasonally between leaves and roots. Energy and nutrient concentrations and CC were the lowest in H. rufa. In the lowland savannas, the higher efficiency of resource use in the invader grass contributes to its higher competitive success through increased growth rate. In the highlands, overall tissue energy concentration and CC, but not N nor P concentration, were lower in the fast growing M. minutiflora but seasonal differences were lacking. The higher leaf CC in T. plumosus can be attributed to the higher proportion of sclerenchyma tissue which is more expensive to construct. Considering CC, both fast growing alien grasses are more efficient in resource use than the co-occurring native grass. However, the role of CC explaining the competitive success of the former, through higher growth rates, is more evident in the more stressful environment of the lowland savanna.  相似文献   
56.
A review is given of the prospects for using process-oriented models of water and nutrient uptake in improving integrated agriculture. Government-imposed restrictions on the use of external inputs will increase the likelihood of (temporary) nutrient or water stress in crop production in NW Europe and thus a better understanding is required of shoot-root-soil interactions than presently available. In modelling nutrient and water uptake, three approaches are possible: 1) models-without-roots, based on empirically derived efficiency ratios for uptake of available resources, 2) models evaluating the uptake potential of root systems as actually found in the field and 3) models which also aim at a prediction of root development as influenced by interactions with environmental factors. For the second type of models the major underlying processes are known and research can concentrate on model refinement on the one hand and practical application on the other. The main parameters required for such models are discussed and examples are given of practical applications. For the third type of models quantification of processes known only qualitatively is urgently needed.  相似文献   
57.
We designed an Integrated Media Preparation System (IMPS) for continuous, on-line preparation of cell culture media and delivery to intermediate storage vessels or directly to a bioreactor. Key components of the IMPS include: a high precision, continuous fluid mixing device; formulation-specific liquid medium concentrates; validated process controls and membrane filtration; and automated dispensing into large volume flexible plastic containers. The IMPS system is designed to produce sterile, single-strength liquid medium from common raw materials at a delivery rate of 1000–3000 liters per hour and will manufacture homogenous batches from several thousand liters to over 60,000 liters. Fortified nutrient media prepared from multi-component 50X concentrates have been demonstrated to accelerate bioreactor seed chains, increase product yield, and reduce the overall manufacturing cost of nutrient medium. A productivity matrix will analyze the fully-loaded costs and contrast alternative methods for media preparation against projected biological yield.Abbreviations IMPS Integrated Media Preparation System - 50X Nutrient fluid components formulated at fifty-fold final use concentration - 1X Nutrient fluid formulated at final, single-strength use concentration - cGMP Current Good Manufacturing Practices - SCADA Supervisory Control and Data Acquisition - PLC Process Logic Controller - LTI Life Technologies, Inc. - WFI Water for Injection - CIP Clean in place - SIP Sterilize in place - HPLC High performance liquid chromatography - DMEM Dulbecco's Modified Eagle's Medium  相似文献   
58.
In the evergreen Fagaceae forests of Japan, an ectomycorrhizal fungusTricholoma bakamatsutake forms shiros or developing mycelial blocks. To determine the physiological characteristics of the mycelial blocks, organic acids of the soil and major nutrient elements of the soil and roots were compared at three types of sites: presently colonized mycelial blocks, previously colonized sites behind the blocks, and uncolonized sites in front of the blocks. The upper part of the mycelial blocks showed the following features compared with the uncolonized site: lower pH (5.1), higher concentrations of oxalic and gluconic acids, lower content of total nitrogen, a similar amount of total carbon, reduced total and available phosphorus, higher content of total calcium and lower content of exchangeable calcium. These findings suggested that the activity of the fungus led to soil acidification by the organic acids, an increase in C/N ratio, depletion of phosphorus and accumulation of calcium.  相似文献   
59.
Variations in the number of spines on the left and right posterior dorsal and posterior margins of the prosome as well as the length of the prosome of Acartia tonsa from three estuaries, the upper western side of the Chesapeake Bay, Montauk Bay near the eastern end of Long Island Sound and the coast of Peru were determined. The length of the prosome and number of spines in each of the four locations were used as an indication of morphological similarity between the populations.  相似文献   
60.
Köhler  Jan  Nixdorf  Brigitte 《Hydrobiologia》1994,(1):187-195
The influences of imports of nutrients and planktonic algae from the River Spree on the dynamics of phytoplankton were examined in the shallow, eutrophic Müggelsee, which has a retention time of only 42 days. Phytoplankton biomass and nutrient concentrations were measured in both the lake and its inflow from 1980–1990. On a long-term average, mean biomass as well as vitality of most dominant phytoplankton populations in the lake were not significantly different from those in the river. Nevertheless, during distinct periods the external rates of biomass change of single lake populations (due to dilution or enrichment) were as high as the lake internal ones. The import of inocula populations from the river probably induced the formation of the typical community structure in the lake. Growth and decay of phytoplankton populations in the river strongly influenced the load of dissolved nutrients and thus indirectly the dynamics of planktonic algae in the downstream lake. For example, intensive assimilation of phosphorus by riverine algae in spring intensified the P-shortage and supported possible P-limitation of algal growth in the lake at that time. In years with high vernal biomass of centric diatoms in the river, and thus diminished import of dissolved silicon, the growth of diatoms was suppressed and that of cyanobacteria was favoured in the lake during summer.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号