首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4109篇
  免费   514篇
  国内免费   1113篇
  2024年   14篇
  2023年   103篇
  2022年   124篇
  2021年   171篇
  2020年   215篇
  2019年   223篇
  2018年   207篇
  2017年   202篇
  2016年   208篇
  2015年   215篇
  2014年   211篇
  2013年   270篇
  2012年   162篇
  2011年   200篇
  2010年   137篇
  2009年   195篇
  2008年   185篇
  2007年   212篇
  2006年   196篇
  2005年   220篇
  2004年   166篇
  2003年   166篇
  2002年   181篇
  2001年   152篇
  2000年   116篇
  1999年   119篇
  1998年   111篇
  1997年   99篇
  1996年   91篇
  1995年   94篇
  1994年   79篇
  1993年   93篇
  1992年   83篇
  1991年   61篇
  1990年   74篇
  1989年   62篇
  1988年   57篇
  1987年   46篇
  1986年   32篇
  1985年   31篇
  1984年   25篇
  1983年   15篇
  1982年   37篇
  1981年   25篇
  1980年   13篇
  1979年   12篇
  1978年   4篇
  1977年   7篇
  1975年   3篇
  1958年   6篇
排序方式: 共有5736条查询结果,搜索用时 734 毫秒
11.
12.
For any element which is incorporated into biomass, the biogeochemical cycle of that element in a given ecosystem will be coupled to that of any other element similarly incorporated. The mutual interaction of two such cycles is examined using a simple model in which each cycle is constrained into four compartments. In each cycle the assimilation rate (primary productivity) is related in a non-linear fashion to the two nutrients and to biomass. The interactions are represented by combining a hyperbolic dependence for each nutrient (involving a "Michaelis constant") with a logistic equation governing the dependence of rate on biomass (involving a "carrying capacity"). The response of the model to perturbation (e.g. mobilization of an abiotic reserve) is strongly governed by the values assigned to these constants. The coupled cycles can exhibit positive feed-back with anomalous responses of the steady state and time-dependent solutions may exhibit complex oscillatory behaviour. Both the steady-state sensitivity and the kinetic behaviour of such coupled systems are simplified if the range of atomic ratios permitted by the assimilation process is restricted. It will therefore be of importance to determine under what conditions the assimilation rates for different elements are governed by mass-action effects (Liebig's Law) or by stoichiometric constraints (Redfield ratios).  相似文献   
13.
Big Moose Basin: simulation of response to acidic deposition   总被引:2,自引:1,他引:1  
The ILWAS model has been enhanced for application to multiple-lake hydrologic basins. This version of the model has been applied to the Big Moose basin, which includes Big Moose Lake and its tributary streams, lakes, and watersheds. The basin, as defined, includes an area of 96 km2, with over 20 lakes and ponds, and 70 km of streams. Hydrologic and chemical calibrations have been made using data from seven sampling stations. When total atmospheric sulfur loading to the basin is halved, the model predicts, after four years of simulation, a decreasing sulfate concentration and to a lesser extent a rising alkalinity at Big Moose Lake outlet. At the end of four years, the results show an increase in pH of 0.1 to 0.5 pH units depending upon season.  相似文献   
14.
Seedlings of 14 species were grown for 14–28 days on nutrient solution with 6 mmol.l−1 NH4 as the sole nitrogen source. Solutions acidity was were kept constant at pH 4.0, 5.0, 6.0 and 7.0 by continuous titration with diluted KOH. The following species were used: barley, maize, oats sorghum, yellow and white lupin, pea, soybean, carrot, flax, castor-oil, spinach, sugarbeet and sunflower. Most plant species grew optimally at pH 6.0 with slight reductions at pH 5.0. Growth of many species was severely inhibited at pH 4.0, but this inhibition was not observed with the legume and cereal species. Yield depressions at pH 4.0 relative to pH 6.0 were well correlated with the respective relative decreases of the K concentration in their roots (P<0.002). In the roots of two species (sunflower and flax) total N concentrations were also strongly reduced at pH 4.0. apparently, the interactions between uptake of K, NH4 and H ions become the prevalent problem at suboptimal pH. At pH 7.0, yields were also considerably decreased, with the exception of the lupines. At this pH, the roots of the growth inhibited plants were characterized by increased levels of total N and free NH4. It is thought that the binding capacity of the roots for NH4 is an important factor in preventing NH4/NH3 toxicity at supraoptimal pH.  相似文献   
15.
Summary InStephanoeca diplocostata microtubules are located in four positions namely: within the flagellar axoneme; just beneath the plasmalemma; associated with the silica deposition vesicles (SDVs) during early stages of costal strip deposition; and in the mitotic spindle. At the anterior end of the cell the 50–60 peripheral microtubules, which are organized more or less parallel to the long axis of the cell, converge around the base of the emergent flagellum. A short second flagellar base is positioned between the nucleus and the base of the emergent flagellum. Developing costal strips are located individually within SDVs in the peripheral cytoplasm. During the early stages of silica deposition each SDV is curved and subtended longitudinally on its concave side by two microtubules. When a costal strip has achieved sufficient rigidity to withstand bending the SDV-associated microtubules are depolymerized. Treatment of exponentially growing cells with sublethal concentrations of microtubule poisons, such as colchicine, podophyllotoxin, griseofulvin andVinca alkaloids depresses growth. Treatment with these drugs also affects the length and morphology of developing costal strips perhaps by interfering with the shaping and supporting functions of SDV-associated microtubules. Instead of being long and crescentic with a standard radius of curvature, costal strips of treated cells are usually short and misshapen, with irregular bends. After drug treatment, juveniles produced as a result of cell division do not develop flagella but can still assemble a lorica although it is usually misshapen. The role of microtubules and microfilaments in lorica production is discussed.  相似文献   
16.
Plants of Taraxacum sellandii Dahlst., a microspecies adapted to fertile, and Taraxacum nordstedtii Dahlst., adapted to infertile soils, were cultured hydroponically, either on a complete nutrient solution or on one deprived of nitrogen, phosphorus, or potassium ions. For all four treatments, the growth and internal mineral concentration of the plants was monitored. For plants cultured on a complete nutrient solution, the uptake rates of nitrate, phosphate, and potassium ions were determined. Luxury consumption of the three macronutrients was computed as the excess of ion absorption over the ion uptake rates minimally required to sustain maximum growth. In these calculations the critical N, P, or K+ concentrations, earlier derived, were used as parameters describing the mineral status minimally required to allow maximum growth. Efficiency in use of the three macroelements at various levels of mineral accumulation was also computed. Finally, the response to phosphate starvation as related to phosphate uptake capacity and the accumulation of P was investigated.
The physiological properies investigated provide a causal background for the superior adaptation of T. nordstedtii as compared to T. sellandii to infertile sites. Taraxacum nordstedtii had a higher relative luxury consumption of NO3, H2PO-4, and K+, a higher efficiency in N and P use at N– and (severe) P-deficiency, respectively; and, after phosphate starvation, a relatively high preservation of phosphate uptake capacity and an enlargement of P storage. In combination with the low potential growth, luxury consumption will be particularly effective in T. nordstedtii in preventing or minimizing mineral deficiency. The distribution of minerals between cytoplasm and vacuoles as a factor in mineral use efficiency is discussed.  相似文献   
17.
Birch ( Betula pendula Roth.) was investigated under steady-state nutrition and growth at different incident photon flux densities (PFD) and different relative addition rates of nitrogen. PFD had a strong influence on the relative growth rate at optimum nutrition and on the nitrogen productivity (growth rate per unit of nitrogen) but little effect on the formal relationships between nitrogen and growth, i.e. PFD and nitrogen nutrition are orthogonal growth factors. At a given suboptimum nitrogen (the same distance from optimum), increased PFD increased the relative growth rate and, therefore, the relative uptake rate and the required relative addition rate in accordance with the theoretical equality between these three parameters at steady-state nutrition. Correspondingly, at a given suboptimum relative addition rate, increased PFD decreased nitrogen status (larger distance from optimum) at an unchanged relative growth rate. Nutrient uptake rate, dry matter content, and partitioning of biomass and nutrients are strongly influenced by nitrogen status. PFD influences these characteristics, but only to an extent corresponding to its effect on the nitrogen status. The influence of PDF on the relative growth rate at optimum and on nitrogen productivity is well described by hyperbolic relationships, similar to reported PFD/photosynthesis relationships. These expressions for plant growth as well as the productivities of leaf area and quantum appear to be valuable characteristics of plant responses to light and nutrition. Although the calculated PFD/growth relationships indicate saturation at high values of PFD, a more realistic estimate of PFD at which saturation occurs is about 30 mol m−2 day−1, where the highest relative growth rate and nitrogen productivity were experimentally determined. No significant effect was observed because of day length differences between the present and previous experiments.  相似文献   
18.
Near a hen house (50–600 m), vitality ofPinus sylvestris, N-, P-, K-, Ca-, Mg-contents of the needles, N-, Mg-, K-, Ca- and Al-contents in soil extracts and NH3/NH 4 + -contents of the air were determined. Damage symptoms occurred when N-immissions hit the canopy directly. In contrast no visible decline of the above ground plant could be observed if N was mainly deposited on the soil.  相似文献   
19.
Of the biogeochemical processes, denitrification has perhaps been the most difficult to study in the field because of the inability to measure the product of the process. The last decade of research, however, has provided both acetylene and15N based methods as well as undisturbed soil core andin situ soil cover sampling approaches to implementing these methods. All of these methods, if used appropriately, give comparable results. Thus, we now have several methods, each with advantages for particular sites or objectives, that accurately measure denitrification in nature. Because of the general usefulness of the acetylene methods, updated protocols for the following three methods are given: gas-phase recirculation soil cores; static soil cores; and the denitrifying enzyme assay also known as the phase 1 assay. Despite the availability of these and other methods, denitrification budgets remain difficult to accurately establish in most environments because of the high spatial and temporal variability inherent in denitrification. Appropriate analysis of those data includes a distribution analysis of the data, and if highly skewed as is typically the case, the most accurate method to estimate the mean and the population variance is the UMVUE method (uniformly minimum variance unbiased estimator). Geostatistical methods have also been employed to improve spatial and temporal estimates of denitrification. These have occasionally been successful for spatial analysis but in the attempt described here for temporal analysis the approach was not useful.Discussions of the importance of denitrification have always focused on quantifying the process and whether particular measured quantities are judged to be a significant amount of nitrogen. A second line of evidence discussed here is the extant genetic record that results from natural selection. These analysis lead to the conclusion that strong selection for denitrification must currently be occurring, which implies that the process is of general significance in soils.  相似文献   
20.
This paper presents information about the release of nitrogen and phosphorus from dying grass roots and the capture of phosphorus by other, living plants. We have paid particular attention to the part played by mycorrhizas in this phosphorus capture, and the possible importance of mycorrhizal links between dying and living roots.WhenLolium perenne plants were grown with ample nutrients and their roots then detached and buried in soil, about half the nitrogen and two-thirds of the phosphorus was lost in three weeks, but only one-fifth of the dry weight. The C:N and C:P ratios suggest that microbial growth in the roots would at first be C-limited but would become N- and P-limited within three weeks.Rapid transfer of32P can occur from dying roots to those of a living plant if the two root systems are intermingled. The amount transferred was substantially increased in two species-combinations that are known to form mycorrhizal links between their root systems. In contrast, in a species-combination where only the living (receiver) plant could become mycorrhizal no significant increase of32P transfer occurred. This evidence, although far from conclusive, suggests that mycorrhizal links between dying and living roots can contribute to nutrient cycling. This research indicates a major difference in nutrient cycling processes between perennial and annual crops.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号