首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   849篇
  免费   102篇
  国内免费   71篇
  2023年   26篇
  2022年   20篇
  2021年   29篇
  2020年   33篇
  2019年   50篇
  2018年   30篇
  2017年   43篇
  2016年   57篇
  2015年   34篇
  2014年   39篇
  2013年   62篇
  2012年   39篇
  2011年   37篇
  2010年   19篇
  2009年   53篇
  2008年   38篇
  2007年   49篇
  2006年   34篇
  2005年   39篇
  2004年   28篇
  2003年   32篇
  2002年   35篇
  2001年   22篇
  2000年   21篇
  1999年   17篇
  1998年   11篇
  1997年   14篇
  1996年   10篇
  1995年   9篇
  1994年   12篇
  1993年   11篇
  1992年   12篇
  1991年   5篇
  1990年   4篇
  1989年   7篇
  1988年   4篇
  1987年   4篇
  1986年   11篇
  1985年   2篇
  1984年   3篇
  1983年   5篇
  1982年   3篇
  1980年   2篇
  1979年   4篇
  1978年   1篇
  1970年   2篇
排序方式: 共有1022条查询结果,搜索用时 62 毫秒
131.
The objective of the present study was to determine the potential plant growth-promoting action of bacterial endophytes isolated from arid land-dwelling plants under normal conditions. Overall, five bacterial endophytes LK11 (Sphingomonas sp. LK11), TP5 (Bacillus subtilis), MPB5.3 (B. subtilis subsp. Subtilis), S9 (B. subtilis subsp. Subtilis), and TP1 (Serratia marcescens) were evaluated based on morphological characteristics after isolation and purification. Phytohormonal analysis of these endophytes predicted indole acetic acid (IAA) production 12.31?±?0.45?, 6.8?±?0.59, and 10.5?±?1.02?μM/mL in the culture broths of LK11, MPB5.3, and TP1, respectively. Under controlled greenhouse conditions, these endophytes were inoculated into soybean, and their growth-promoting characteristics were compared with those of non-phytohormone-producing endophytes. In terms of plant growth promotion, among IAA-producing endophytes, LK11 and TP1 greatly improved physiological characteristics such as shoot/root length, fresh/dry weight, and chlorophyll contents. However, the non-phytohormone-producing endophytes TP5 and S9 did not show a growth-promoting effect. Based on these results, plants inoculated with LK11 and TP1 along with a control were subjected to endogenous hormonal analysis and showed a significant increase in abscisic acid (457.30–398.55 vs. 205.93 ng/g D.W.) and a decrease in jasmonic acid content (50.07–85.07 vs. 93.90 ng/g D.W.), respectively. Total gibberellin content was found to significantly increase in endophyte-inoculated plants (155.43–146.94?ng/g D.W.) as compared to that in controls (113.76 ng/g D.W.). In summary, bacterial endophytes might be used to enhance crop plant physiological characteristics isolated from arid land-inhabiting plants under normal conditions.  相似文献   
132.
Land‐use change to bioenergy crop production can contribute towards addressing the dual challenges of greenhouse gas mitigation and energy security. Realisation of the mitigation potential of bioenergy crops is, however, dependent on suitable crop selection and full assessment of the carbon (C) emissions associated with land conversion. Using eddy covariance‐based estimates, ecosystem C exchange was studied during the early‐establishment phase of two perennial crops, C3 reed canary grass (RCG) and C4 Miscanthus, planted on former grassland in Ireland. Crop development was the main determinant of net carbon exchange in the Miscanthus crop, restricting significant net C uptake during the first 2 years of establishment. The Miscanthus ecosystem switched from being a net C source in the conversion year to a strong net C sink (?411 ± 63 g C m?2) in the third year, driven by significant above‐ground growth and leaf expansion. For RCG, early establishment and rapid canopy development facilitated a net C sink in the first 2 years of growth (?319 ± 57 (post‐planting) and ?397 ± 114 g C m?2, respectively). Peak seasonal C uptake occurred three months earlier in RCG (May) than Miscanthus (August), however Miscanthus sustained net C uptake longer into the autumn and was close to C‐neutral in winter. Leaf longevity is therefore a key advantage of C4 Miscanthus in temperate climates. Further increases in productivity are projected as Miscanthus reaches maturity and are likely to further enhance the C sink potential of Miscanthus relative to RCG.  相似文献   
133.
Bt蛋白能通过转Bt基因作物的秸秆还田进入土壤,进而可能会对土壤动物如蚯蚓的生长发育和生殖造成影响.为评估Bt水稻对赤子爱胜蚓的影响,本文模拟秸秆还田,在土壤中添加2.5%、5%、7.5%和10% Bt水稻(b2B138)及其同源水稻(安丰A)秸秆,分别在饲养赤子爱胜蚓7、15、30、45、60、75和90 d后观测蚯蚓的存活率、相对生长率和生殖情况,以及秸秆土壤混合物和蚯蚓体内的Cry1Ab蛋白含量.结果表明:较高还田量(7.5%和10%)Bt水稻秸秆处理对赤子爱胜蚓存活率有抑制作用;Bt水稻秸秆还田对赤子爱胜蚓的相对生长率没有不利影响;还田量为5%、7.5%和10%时,Bt水稻秸秆还田能促进蚯蚓的生殖.酶联免疫吸附测定法(ELISA)结果表明: 在Bt水稻土壤混合物中,蚯蚓体内均能检测到Cry1Ab蛋白,且前者随着时间延长而显著减少.因此,还田量为2.5%和5%时,Bt水稻秸秆还田释放的Cry1Ab蛋白对赤子爱胜蚓的生长发育和生殖没有不利影响.  相似文献   
134.
Aims Identifying the amount of production and the partitioning to above- and belowground biomass is generally the first step toward selecting bioenergy systems. There are very few existing studies on the dynamics of production following land conversion. The objectives of this study were to (i) determine the differences in aboveground net primary production (ANPP), belowground net primary production (BNPP), shoot-to-root ratio (S:R) and leaf area index in three bioenergy crop systems and (ii) evaluate the production of these three systems in two different land use conversions.Methods This investigation included biometric analysis of NPP on three agricultural sites converted from conservation reserve program (CRP) management to bioenergy crop production (corn, switchgrass and prairie mix) and three sites converted from traditional agriculture production to bioenergy crop production.Important findings The site converted from conventional agriculture produced smaller ANPP in corn (19.03±1.90 standard error [SE] Mg ha-1 year-1) than the site converted from CRP to corn (24.54±1.43 SE Mg ha-1 year-1). The two land conversions were similar in terms of ANPP for switchgrass (4.88±0.43 SE for CRP and 2.04±0.23 SE Mg ha-1 year-1 for agriculture) and ANPP for prairie mix (4.70±0.50 SE for CRP and 3.38±0.33 SE Mg ha-1 year-1 for agriculture). The BNPP at the end of the growing season in all the bioenergy crop systems was not significantly different (P = 0.75, N = 8).  相似文献   
135.
Soil and crop management practices may influence biomass growth and yields of cotton (Gossypium hirsutum L.) and sorghum (Sorghum bicolorL.) and sequester significant amount of atmospheric CO2in plant biomass and underlying soil, thereby helping to mitigate the undesirable effects of global warming. This study examined the effects of three tillage practices [no-till (NT), strip till (ST), and chisel till (CT)], four cover crops [legume (hairy vetch) (Vicia villosa roth), nonlegume (rye) (Secale cerealeL), hairy vetch/rye mixture, and winter weeds orno covercrop], and three N fertilization rates (0, 60–65, and 120–130 kg N ha –1) on the amount of C sequestered in cotton lint (lint + seed), sorghum grain, their stalks (stems + leaves) and roots, and underlying soil from 2000 to 2002 in central Georgia, USA. A field experiment was conducted on a Dothan sandy loam (fine-loamy, kaolinitic, thermic, Plinthic Kandiudults). In 2000, C accumulation in cotton lint was greater in NT with rye or vetch/rye mixture but in stalks, it was greater in ST with vetch or vetch/rye mixture than in CT with or without cover crops. Similarly, C accumulation in lint was greater in NT with 60 kg N ha –1 but in stalks, it was greater in ST with 60 and 120 kg N ha –1 than in CT with 0 kg N ha –1. In 2001, C accumulation in sorghum grains and stalks was greater in vetch and vetch/rye mixture with or without N rate than in rye without N rate. In 2002, C accumulation in cotton lint was greater in CT with or without N rate but in stalks, it was greater in ST with 60 and 120 kg N ha –1 than in NT with or without N rate. Total C accumulation in the above- and belowground biomass in cotton ranged from 1.7 to 5.6 Mg ha –1 and in sorghum ranged from 3.4 to 7.2 Mg ha –1. Carbon accumulation in cotton and sorghum roots ranged from 1 to 14% of the total C accumulation in above- and belowground biomass. In NT, soil organic C at 0–10 cm depth was greater in vetch with 0 kg N ha –1 or in vetch/rye with 120–130 kg N ha –1 than in weeds with 0 and 60 kg N ha –1 but at 10–30 cm, it was greater in rye with 120–130 kg N ha –1 than in weeds with or without rate. In ST, soil organic C at 0–10 cm was greater in rye with 120–130 kg N ha –1 than in rye, vetch, vetch/rye and weeds with 0 and 60 kg N ha –1. Soil organic C at 0–10 and 10–30 cm was also greater in NT and ST than in CT. Since 5 to 24% of C accumulation in lint and grain were harvested, C sequestered in cotton and sorghum stalks and roots can be significant in the terrestrial ecosystem and can significantly increase C storage in the soil if these residues are left after lint or grain harvest, thereby helping to mitigate the effects of global warming. Conservation tillage, such as ST, with hairy vetch/rye mixture cover crops and 60–65 kg N ha –1 can sustain C accumulation in cotton lint and sorghum grain and increase C storage in the surface soil due to increased C input from crop residues and their reduced incorporation into the soil compared with conventional tillage, such as CT, with no cover crop and N fertilization, thereby maintaining crop yields, improving soil quality, and reducing erosion.  相似文献   
136.
The fungus, Muscodor albus, was tested for nematicidal and nematostatic potential against four plant-parasitic nematode species with three different feeding modes on economically important vegetable crops in the Pacific Northwest. Meloidogyne chitwoodi, Meloidogyne hapla, Paratrichodorus allius, and Pratylenchus penetrans were exposed for 72 h to volatiles generated by M. albus cultured on rye grain in sealed chambers at 24 °C in the laboratory. In addition, the nematodes were inoculated into soil fumigated with M. albus, and incubated for 7 days prior to the introduction of host plants under greenhouse conditions. The mean percent mortality of nematodes exposed to M. albus in the chamber was 82.7% for P. allius, 82.1% for P. penetrans, and 95% for M. chitwoodi; mortality in the nontreated controls was 5.8%, 7%, and 3.9%, respectively. Only 21.6% of M. hapla juveniles died in comparison to 8.9% in controls. However, 69.5% of the treated juveniles displayed reduced motility and lower response to physical stimulus by probing, in comparison to the control juveniles. This is evidence of nematostasis due to M. albus exposure. The greenhouse study showed that M. albus caused significant reduction to all nematode species in host roots and in rhizosphere soil. The percent mortality caused by M. albus applied at 0.5% and 1.0% w/w in comparison to the controls was as follows: 91% and 100% for P. allius in the soil; 100% for P. penetrans in bean roots and soil; 85% and 95% for M. chitwoodi in potato roots, and 56% and 100% in the soil; 100% for M. hapla both in pepper roots and soil. In this study, M. albus has shown both nematostatic and nematicidal properties.  相似文献   
137.
Aims:  To assess the risks of zoonotic agents in dissemination of livestock wastes into the environment by airborne distribution. To subsequently assess the survival time of zoonotic agents, introduced in irrigation water, on the phylloplane of produce.
Methods and Results:  An Escherichia coli marker was introduced into pig slurry which was spread using a rain gun sprayer. Air sampling was undertaken to determine the distance reached by the marker. No recoveries were observed at a distance of 250 m. Borehole water, contaminated with zoonotic agents, was used to irrigate field plots sown with lettuce and spinach. Decline in bacterial numbers on the phylloplane was observed with time. After initial rapid decreases, we were unable to detect any pathogen from the phylloplane, 1 month after contamination.
Conclusions:  These preliminary results suggest that the risks to public health from the aerosolized spread of bacteria during slurry spreading by rain gun are low. Although, zoonotic agents on crop phylloplanes perish quickly, the risks of overhead irrigation of fresh produce 3 weeks before harvest should still be considered.
Significance and Impact of the Study:  These preliminary results improve our understanding on the fate of zoonotic agents in the environment. Spreading liquid livestock wastes by an airborne mechanism may not pose a significant public health risk. Detection of zoonotic agents 3 weeks after contamination of lettuce and spinach means that consideration should be given by the farmers until the time of harvest, when irrigating fresh produce with water that may have been directly or indirectly contaminated by livestock wastes.  相似文献   
138.
Abstract 1 We tested the hypothesis that providing nectar‐producing cover crops will enhance the biological control of grape leafhoppers (Erythroneura spp.) by Anagrus wasps in commercial vineyards in New York, U.S.A. 2 We established three cover crops between vine rows in a commercial vineyard: buckwheat (Fagopyrum esculentum (Moench)), clover (Trifolium repens L.) and mowed sod (Dactylis glomerata L.). 3 There was no effect of cover crop on adult Anagrus in 1996, whereas in 1997 adults were more abundant within edge vines with buckwheat compared to vines with clover or sod; adults were more abundant at the vineyard edge, especially early in the season. 4 Parasitism of ‘sentinel’ leafhopper eggs was higher on vines with buckwheat compared to parasitism on vines with clover or sod in 1996; a similar, non‐significant trend, was observed in 1997. 5 Neither the abundance nor the distribution of leafhoppers was influenced by cover crops, although in 1997 there was a trend toward greater numbers of nymphs on edge vines with buckwheat. 6 In a cage experiment, parasitism by Anagrus of leafhopper eggs on grapes was greater when adults had access to flowering buckwheat rather than buckwheat without flowers. 7 In a laboratory study, longevity of female Anagrus was increased when provided with honey or sugar water compared to water only or nothing. 8 Our results suggest that parasitism of grape leafhoppers by Anagrus may be enhanced by providing floral resources within vineyards in New York, although it is unclear whether this will produce meaningful reductions in pest abundance.  相似文献   
139.
140.
胡阳  傅强 《昆虫学报》2009,52(6):691-698
目前, 抗虫转基因作物的抗性管理方法主要是高剂量/庇护所策略。该策略的有效性取决于3个基本的假设条件:(1)抗虫转基因作物(Bt作物)表达出高剂量的杀虫蛋白, 该剂量使得靶标害虫对Bt杀虫蛋白的抗性表现型为功能性完全隐性或近于完全隐性, 进而使得Bt作物可以杀死几乎所有的抗性杂合个体和所有的敏感性个体;(2)靶标害虫种群的Bt抗性基因起始频率处于很低的水平;(3)源自转基因作物田和非转基因作物田(庇护所)的成虫在田间随机混合并交配。这3个假设必须同时满足, 缺一不可。本文就这3个假设的理论基础和经验研究的进展进行了综合论述, 并着重讨论了随机交配假设的最新研究进展以及今后的研究方向和方法。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号