首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6451篇
  免费   735篇
  国内免费   157篇
  2023年   154篇
  2022年   96篇
  2021年   191篇
  2020年   254篇
  2019年   314篇
  2018年   282篇
  2017年   279篇
  2016年   282篇
  2015年   277篇
  2014年   341篇
  2013年   455篇
  2012年   267篇
  2011年   303篇
  2010年   253篇
  2009年   320篇
  2008年   365篇
  2007年   386篇
  2006年   287篇
  2005年   259篇
  2004年   232篇
  2003年   173篇
  2002年   202篇
  2001年   165篇
  2000年   130篇
  1999年   130篇
  1998年   103篇
  1997年   80篇
  1996年   78篇
  1995年   62篇
  1994年   59篇
  1993年   48篇
  1992年   49篇
  1991年   69篇
  1990年   33篇
  1989年   35篇
  1988年   34篇
  1987年   36篇
  1986年   27篇
  1985年   30篇
  1984年   28篇
  1983年   15篇
  1982年   48篇
  1981年   23篇
  1980年   16篇
  1979年   12篇
  1978年   11篇
  1975年   5篇
  1974年   6篇
  1973年   12篇
  1972年   12篇
排序方式: 共有7343条查询结果,搜索用时 953 毫秒
991.
A number of modeling approaches have been developed to predict the impacts of climate change on species distributions, performance, and abundance. The stronger the agreement from models that represent different processes and are based on distinct and independent sources of information, the greater the confidence we can have in their predictions. Evaluating the level of confidence is particularly important when predictions are used to guide conservation or restoration decisions. We used a multi‐model approach to predict climate change impacts on big sagebrush (Artemisia tridentata), the dominant plant species on roughly 43 million hectares in the western United States and a key resource for many endemic wildlife species. To evaluate the climate sensitivity of A. tridentata, we developed four predictive models, two based on empirically derived spatial and temporal relationships, and two that applied mechanistic approaches to simulate sagebrush recruitment and growth. This approach enabled us to produce an aggregate index of climate change vulnerability and uncertainty based on the level of agreement between models. Despite large differences in model structure, predictions of sagebrush response to climate change were largely consistent. Performance, as measured by change in cover, growth, or recruitment, was predicted to decrease at the warmest sites, but increase throughout the cooler portions of sagebrush's range. A sensitivity analysis indicated that sagebrush performance responds more strongly to changes in temperature than precipitation. Most of the uncertainty in model predictions reflected variation among the ecological models, raising questions about the reliability of forecasts based on a single modeling approach. Our results highlight the value of a multi‐model approach in forecasting climate change impacts and uncertainties and should help land managers to maximize the value of conservation investments.  相似文献   
992.
Climate change represents a primary threat to species persistence and biodiversity at a global scale. Cold adapted alpine species are especially sensitive to climate change and can offer key “early warning signs” about deleterious effects of predicted change. Among mountain ungulates, survival, a key determinant of demographic performance, may be influenced by future climate in complex, and possibly opposing ways. Demographic data collected from 447 mountain goats in 10 coastal Alaska, USA, populations over a 37‐year time span indicated that survival is highest during low snowfall winters and cool summers. However, general circulation models (GCMs) predict future increase in summer temperature and decline in winter snowfall. To disentangle how these opposing climate‐driven effects influence mountain goat populations, we developed an age‐structured population model to project mountain goat population trajectories for 10 different GCM/emissions scenarios relevant for coastal Alaska. Projected increases in summer temperature had stronger negative effects on population trajectories than the positive demographic effects of reduced winter snowfall. In 5 of the 10 GCM/representative concentration pathway (RCP) scenarios, the net effect of projected climate change was extinction over a 70‐year time window (2015–2085); smaller initial populations were more likely to go extinct faster than larger populations. Using a resource selection modeling approach, we determined that distributional shifts to higher elevation (i.e., “thermoneutral”) summer range was unlikely to be a viable behavioral adaptation strategy; due to the conical shape of mountains, summer range was expected to decline by 17%–86% for 7 of the 10 GCM/RCP scenarios. Projected declines of mountain goat populations are driven by climate‐linked bottom‐up mechanisms and may have wide ranging implications for alpine ecosystems. These analyses elucidate how projected climate change can negatively alter population dynamics of a sentinel alpine species and provide insight into how demographic modeling can be used to assess risk to species persistence.  相似文献   
993.
An infection by Zika virus(ZIKV), a mosquito-borne flavivirus, broke out in South American regions in 2015, and recently showed a tendency of spreading to North America and even worldwide. ZIKV was first detected in 1947 and only 14 human infection cases were reported until 2007. This virus was previously observed to cause only mild flu-like symptoms.However, recent ZIKV infections might be responsible for the increasing cases of neurological disorders such as GuillainBarre′ syndrome and congenital defects, including newborn microcephaly. Therefore, researchers have established several animal models to study ZIKV transmission and pathogenesis, and test therapeutic candidates. This review mainly summarizes the reported animal models of ZIKV infection, including mice and non-human primates.  相似文献   
994.
Understanding the relationships between biodiversity and ecosystem productivity has become a central issue in ecology and conservation biology studies, particularly when these relationships are connected with global climate change and species extinction. However, which facets of biodiversity (i.e. taxonomic, functional, and phylogenetic diversity) account most for variations in productivity are still not understood very well. This is especially true with regard to temperate forest ecosystems. In this study, we used a dataset from a stem‐mapped permanent forest plot in northeastern China exploring the relationships between biodiversity and productivity at different spatial scales (20 × 20 m; 40 × 40 m; and 60 × 60 m). The influence of specific environmental conditions (topographic conditions) and stand maturity (expressed by initial stand volume and biomass) were taken into account using the multivariate approach known as structural equation models. The variable “Biodiversity” includes taxonomic (Shannon), functional (FDis), and phylogenetic diversity (PD). Biodiversity–productivity relationships varied with the spatial scales. At the scale of 20 × 20 m, PD and FDis significantly affected forest biomass productivity, while Shannon had only indirect effects. At the 40 × 40 m and 60 × 60 m scales, biodiversity and productivity were weakly correlated. The initial stand volume and biomass were the most important drivers of forest productivity. The local environmental conditions significantly influenced the stand volume, biomass, biodiversity, and productivity. The results highlight the scale dependency of the relationships between forest biodiversity and productivity. The positive role of biodiversity in facilitating forest productivity was confirmed at the smaller scales. Our findings emphasize the fundamental role of environmental conditions in determining forest ecosystem performances. The results of this study provide a better understanding of the underlying ecological processes that influence specific forest biodiversity and productivity relationships.  相似文献   
995.
Climate change and biological invasions are threatening biodiversity and ecosystem services worldwide. It has now been widely acknowledged that climate change will affect biological invasions. A large number of studies have investigated predicted shifts and other changes in the geographic ranges of invasive alien species related to climate change using modeling approaches. Yet these studies have provided contradictory evidence, and no consensus has been reached. We conducted a systematic review of 423 modeling case studies included in 71 publications that have examined the predicted effects of climate change on those species. We differentiate the approaches used in these studies and synthesize their main results. Our results reaffirm the major role of climate change as a driver of invasive alien species distribution in the future. We found biases in the literature both regarding the taxa, toward plants and invertebrates, and the areas of the planet investigated. Despite these biases, we found for the plants and vertebrates studied that climate change will more frequently contribute to a decrease in species range size than an increase in the overall area occupied. This is largely due to oceans preventing terrestrial invaders from spreading poleward. In contrast, we found that the ranges of invertebrates and pathogens studied are more likely to increase following climate change. An important caveat to these findings is that researchers have rarely considered the effects of climate change on transport, introduction success, or the resulting impacts. We recommend closing these research gaps, and propose additional avenues for future investigations, as well as opportunities and challenges for managing invasions under climate change.  相似文献   
996.
Species distribution models (SDM) can be valuable for identifying key habitats for conservation management of threatened taxa, but anthropogenic habitat change can undermine SDM accuracy. We used data for the Red Siskin (Spinus cucullatus), a critically endangered bird and ground truthing to examine anthropogenic habitat change as a source of SDM inaccuracy. We aimed to estimate: (1) the Red Siskin's historic distribution in Venezuela; (2) the portion of this historic distribution lost to vegetation degradation; and (3) the location of key habitats or areas with both, a high probability of historic occurrence and a low probability of vegetation degradation. We ground‐truthed 191 locations and used expert opinion as well as landscape characteristics to classify species' habitat suitability as excellent, good, acceptable, or poor. We fit a Random Forest model (RF) and Enhanced Vegetation Index (EVI) time series to evaluate the accuracy and precision of the expert categorization of habitat suitability. We estimated the probability of historic occurrence by fitting a MaxLike model using 88 presence records (1960–2013) and data on forest cover and aridity index. Of the entire study area, 23% (20,696 km2) had a historic probability of Red Siskin occurrence over 0.743. Furthermore, 85% of ground‐truthed locations had substantial reductions in mean EVI, resulting in key habitats totaling just 976 km2, in small blocks in the western and central regions. Decline in Area of Occupancy over 15 years was between 40% and 95%, corresponding to an extinction risk category between Vulnerable and Critically Endangered. Relating key habitats with other landscape features revealed significant risks and opportunities for proposed conservation interventions, including the fact that ongoing vegetation degradation could limit the establishment of reintroduced populations in eastern areas, while the conservation of remaining key habitats on private lands could be improved with biodiversity‐friendly agri‐ and silviculture programs.  相似文献   
997.
Many parasites infect multiple hosts, but estimating the transmission across host species remains a key challenge in disease ecology. We investigated the within and across host species dynamics of canine distemper virus (CDV) in grizzly bears (Ursus arctos) and wolves (Canis lupus) of the Greater Yellowstone Ecosystem (GYE). We hypothesized that grizzly bears may be more likely to be exposed to CDV during outbreaks in the wolf population because grizzly bears often displace wolves while scavenging carcasses. We used serological data collected from 1984 to 2014 in conjunction with Bayesian state‐space models to infer the temporal dynamics of CDV. These models accounted for the unknown timing of pathogen exposure, and we assessed how different testing thresholds and the potential for testing errors affected our conclusions. We identified three main CDV outbreaks (1999, 2005, and 2008) in wolves, which were more obvious when we used higher diagnostic thresholds to qualify as seropositive. There was some evidence for increased exposure rates in grizzly bears in 2005, but the magnitude of the wolf effect on bear exposures was poorly estimated and depended upon our prior distributions. Grizzly bears were exposed to CDV prior to wolf reintroduction and during time periods outside of known wolf outbreaks, thus wolves are only one of several potential routes for grizzly bear exposures. Our modeling approach accounts for several of the shortcomings of serological data and is applicable to many wildlife disease systems, but is most informative when testing intervals are short. CDV circulates in a wide range of carnivore species, but it remains unclear whether the disease persists locally within the GYE carnivore community or is periodically reintroduced from distant regions with larger host populations.  相似文献   
998.
Background: Species composition of plant communities is shaped by the interplay between dispersal limitation, environmental filters and stochastic events.

Aims: The aim of this work was to investigate the effects of dispersal limitation and environmental filtering on tree recruitment. To accomplish this, we employed the unified neutral theory of biodiversity and biogeography to examine migration within the metacommunity, defined as a set of interacting local communities linked by the dispersal of multiple potentially interacting species.

Methods: We sampled 12,975 individuals with dbh ≥ 1 cm in 26 1-ha permanent plots, including habitats of terra firme, transitional forests, várzea and campinarana, on the upper Madeira River, Brazilian Amazon.

Results: Campinarana drew individuals from outside the metacommunity species pool at a mean probability of recruitment of 0.06, a much lower probability than terra firme (0.31), transitional (0.21) and várzea forests (0.22). Environmental variables, such as water table depth, soil texture and fertility, were related to differences in community assembly.

Conclusions: Species abundance distribution and diversity patterns of plant assemblages in a large river landscape in the Amazon highlight the importance of environmental heterogeneity that conditions beta-diversity. The high variation in recruitment probabilities from the metacommunity species pool to local communities suggests high habitat variability in the process of maintaining patterns of local diversity.  相似文献   

999.
采用DNA指纹分析和聚丙烯酰胺凝胶电泳法,对一例与公驴交配生育了后代的母后代进行了亲缘鉴定和血清蛋白、酯酶遗传的分析。结果可以认定其亲子关系并证实母骡生育的事实。虽然本例母的后代在Pr、Al、Pa和Hb、Es等基因座位上的基因表达倾向于驴,但其外貌仍明显地带有种间杂种的特征。因此,尚不能简单地认为其已“回归”为纯种的驴。  相似文献   
1000.
Both island-biogeographic (dynamic) and niche-based (static) metapopulation models make predictions about the distribution and abundance of species assemblages. We tested the utility of these models concerning such predictions for terrestrial vascular plants using data from 74 landscapes across the globe. We examined correlations between species frequency and local abundance and shapes of the species frequency distribution. No data set met all of the predictions of any single island-biogeographic metapopulation model. In contrast, all data sets met the predictions of the niche-based model. We conclude that in predicting the distribution of species assemblages of plants over scales greater than 10–1 km, niche-based models are robust while current metapopulation models are insufficient. We discuss limitations in the assumptions of the various models and the types of empirical observations that they will each have to deal with in further developments.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号