全文获取类型
收费全文 | 15476篇 |
免费 | 1097篇 |
国内免费 | 499篇 |
专业分类
17072篇 |
出版年
2023年 | 147篇 |
2022年 | 228篇 |
2021年 | 289篇 |
2020年 | 317篇 |
2019年 | 408篇 |
2018年 | 487篇 |
2017年 | 363篇 |
2016年 | 377篇 |
2015年 | 434篇 |
2014年 | 914篇 |
2013年 | 1284篇 |
2012年 | 681篇 |
2011年 | 746篇 |
2010年 | 646篇 |
2009年 | 790篇 |
2008年 | 802篇 |
2007年 | 711篇 |
2006年 | 696篇 |
2005年 | 656篇 |
2004年 | 588篇 |
2003年 | 563篇 |
2002年 | 488篇 |
2001年 | 283篇 |
2000年 | 249篇 |
1999年 | 271篇 |
1998年 | 324篇 |
1997年 | 245篇 |
1996年 | 208篇 |
1995年 | 243篇 |
1994年 | 230篇 |
1993年 | 204篇 |
1992年 | 221篇 |
1991年 | 149篇 |
1990年 | 161篇 |
1989年 | 148篇 |
1988年 | 134篇 |
1987年 | 122篇 |
1986年 | 126篇 |
1985年 | 188篇 |
1984年 | 181篇 |
1983年 | 190篇 |
1982年 | 186篇 |
1981年 | 130篇 |
1980年 | 85篇 |
1979年 | 68篇 |
1978年 | 39篇 |
1977年 | 22篇 |
1976年 | 16篇 |
1975年 | 10篇 |
1974年 | 9篇 |
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
201.
Histidine‐rich, unstructured peptides adsorb to charged interfaces such as mineral surfaces and microbial cell membranes. At a molecular level, we investigate the adsorption mechanism as a function of pH, salt, and multivalent ions showing that (1) proton charge fluctuations are—in contrast to the majority of proteins—optimal at neutral pH, promoting electrostatic interactions with anionic surfaces through charge regulation and (2) specific zinc(II)‐histidine binding competes with protons and ensures an unusually constant charge distribution over a broad pH interval. In turn, this further enhances surface adsorption. Our analysis is based on atomistic molecular dynamics simulations, coarse grained Metropolis Monte Carlo, and classical polymer density functional theory. This multiscale modeling provides a consistent picture in good agreement with experimental data on Histatin 5, an antimicrobial salivary peptide. Biological function is discussed and we suggest that charge regulation is a significant driving force for the remarkably robust activity of histidine‐rich antimicrobial peptides. Proteins 2014; 82:657–667. © 2013 Wiley Periodicals, Inc. 相似文献
202.
《Journal of molecular biology》2022,434(23):167872
EF-hand Ca2+-binding proteins (CBPs), such as S100 proteins (S100s) and calmodulin (CaM), are signaling proteins that undergo conformational changes upon increasing intracellular Ca2+. Upon binding Ca2+, S100 proteins and CaM interact with protein targets and induce important biological responses. The Ca2+-binding affinity of CaM and most S100s in the absence of target is weak (CaKD > 1 μM). However, upon effector protein binding, the Ca2+ affinity of these proteins increases via heterotropic allostery (CaKD < 1 μM). Because of the high number and micromolar concentrations of EF-hand CBPs in a cell, at any given time, allostery is required physiologically, allowing for (i) proper Ca2+ homeostasis and (ii) strict maintenance of Ca2+-signaling within a narrow dynamic range of free Ca2+ ion concentrations, [Ca2+]free. In this review, mechanisms of allostery are coalesced into an empirical “binding and functional folding (BFF)” physiological framework. At the molecular level, folding (F), binding and folding (BF), and BFF events include all atoms in the biomolecular complex under study. The BFF framework is introduced with two straightforward BFF types for proteins (type 1, concerted; type 2, stepwise) and considers how homologous and nonhomologous amino acid residues of CBPs and their effector protein(s) evolved to provide allosteric tightening of Ca2+ and simultaneously determine how specific and relatively promiscuous CBP-target complexes form as both are needed for proper cellular function. 相似文献
203.
R. J. Bernacki M. Sharma N. K. Porter Y. Rustum B. Paul W. Korytnyk 《Journal of cellular biochemistry》1977,7(2):235-250
We have synthesized several potential inhibitors and/or modifiers of the carbohydrate portion of plasma membrane glycoconjugates. These include fluorinated and actylated analogs of D-glucosamine, D-galactosamine, and D-mannosamine. These compounds have been tested to determine their effects on both [14C] glucosamine and [3H] leucine incorporation into glycoconjugate and on cell growth and viability using P-288 murine lymphoma cells maintained in tissue culture. The most cytotoxic agent tested was 2-acetamido-2-deoxy-1,3,4,6-tetra-O-acetyl-β-D-glucopyranose or simply β-pentaacetylglucosamine which prevented cell growth at 10?4–10?3 M. β-Pentaacetylglucosamine cytotoxicity was correlated with its high lipid solubility, having an octanol/water partition coefficient of 0.424 as compared with 0.278 for the β-anomer and 0.017 for N-acetylglucosamine. In vitro metabolism studies with [14C]-and/or [3H]-labeled pentaacetylglucosamine have indicated intracellular de-O-acetylation leading to the biosynthesis of UDP-N-acetylglucosamine, followed by the incorporation of this sugar into cellular glycoprotein. Concomitant with the formation of increased amounts of this nucleotide sugar, intracellular UTP and CTP pools fell to one third normal within 3 h after the administration of 1 mM pentaacetylglucosamine. At present it is unclear whether the cytotoxicity of β-pentaacetylglucosamine or other similar agents is due to alterations in nucleotide and nucleotide-sugar pools causing a decrease in energy charge and polynucleotide biosynthesis or is due to a direct effect on membrane glycoconjugate biosynthesis. 相似文献
204.
Abstract: [3 H] γ -Aminobutyric acid ([3 H]GABA) binding to purified lipids was examined in an organic solvent-aqueous partition system. In addition, the [3 H]GABA binding capacity in the partition system was compared with the capacity of lipids to alter sodium-dependent [3 H]GABA uptake into synaptosomes isolated from rat whole brains. [3 H]GABA was found to bind to all of the lipids studied in the organic solvent-aqueous partition system [phosphatidic acid (PA), phosphatidylethanolamine (PE), phosphatidylinositol (PI), phosphatidylserine (PS), gangliosides, and sulfatide], although PS exhibited the greatest binding capacity. [3 H]GABA uptake into synaptosomes was enhanced by PS (48.0%) but was not altered by any other lipid. PS enhancement of [3 H]GABA uptake required the presence of sodium and was blocked by nipecotic acid (10 μ m ). These results suggest that PS may play a role in the sodium-dependent GABA reuptake process in the presynaptic nerve end. 相似文献
205.
Andrea Piserchio Pravin A. Nair Stewart Shuman Ranajeet Ghose 《Biomolecular NMR assignments》2009,3(1):77-80
Chlorella virus DNA ligase (ChVLig) is a minimal (298-amino acid) pluripotent ATP-dependent ligase composed of three structural
modules—a nucleotidyltransferase domain, an OB domain, and a β-hairpin latch—that forms a circumferential clamp around nicked
DNA. ChVLig provides an instructive model to understand the chemical and conformational steps of nick repair. Here we report
the assignment of backbone 13C, 15N, 1HN resonances of this 34.2 kDa protein, the first for a DNA ligase in full-length form. 相似文献
206.
Mehul K. Joshi Robert A. Burton Heng Wu Andrew M. Lipchik Barbara P. Craddock Huaping Mo Laurie L. Parker W. Todd Miller Carol Beth Post 《Protein science : a publication of the Protein Society》2020,29(2):350-359
Most signal transduction pathways in humans are regulated by protein kinases through phosphorylation of their protein substrates. Typical eukaryotic protein kinases are of two major types: those that phosphorylate‐specific sequences containing tyrosine (~90 kinases) and those that phosphorylate either serine or threonine (~395 kinases). The highly conserved catalytic domain of protein kinases comprises a smaller N lobe and a larger C lobe separated by a cleft region lined by the activation loop. Prior studies find that protein tyrosine kinases recognize peptide substrates by binding the polypeptide chain along the C‐lobe on one side of the activation loop, while serine/threonine kinases bind their substrates in the cleft and on the side of the activation loop opposite to that of the tyrosine kinases. Substrate binding structural studies have been limited to four families of the tyrosine kinase group, and did not include Src tyrosine kinases. We examined peptide‐substrate binding to Src using paramagnetic‐relaxation‐enhancement NMR combined with molecular dynamics simulations. The results suggest Src tyrosine kinase can bind substrate positioning residues C‐terminal to the phosphoacceptor residue in an orientation similar to serine/threonine kinases, and unlike other tyrosine kinases. Mutagenesis corroborates this new perspective on tyrosine kinase substrate recognition. Rather than an evolutionary split between tyrosine and serine/threonine kinases, a change in substrate recognition may have occurred within the TK group of the human kinome. Protein tyrosine kinases have long been therapeutic targets, but many marketed drugs have deleterious off‐target effects. More accurate knowledge of substrate interactions of tyrosine kinases has the potential for improving drug selectivity. 相似文献
207.
Julia K. Keppler Dierk Martin Vasil M. Garamus Karin Schwarz 《Journal of molecular recognition : JMR》2015,28(11):656-666
The lipocalin β‐lactoglobulin (β‐LG) exists in different natural genetic variants—of which β‐LG A and B are predominant in bovine milk. At physiological conditions the protein dimerizes—building homodimers of β‐LG A and β‐LG B and heterodimers of β‐LG AB. Although β‐LG is one of the most intensely characterized lipocalins, the interaction behavior of ligands with hetero‐ and homodimers of β‐LG is largely unknown. The present findings revealed significant differences for hetero‐ and homodimers regarding ligand binding capacity as tested with a model ligand (i.e. surface binding (?)‐epigallocatechin gallate (EGCG)). These findings were confirmed using FT‐IR, where the addition of EGCG influenced the β‐sheet backbone of homodimer A and B with significantly higher intensity compared to heterodimer AB. Further, shape analysis by SAXS revealed oligomerization of both types of dimers upon addition of EGCG; however, homodimer A and B produced significantly larger aggregates compared to the heterodimer AB. In summary, the present study revealed that EGCG showed significantly different interaction reactivity (binding sites, aggregation size and conformational changes) to the hetero and homodimers of β‐LG in the order β‐LG A > B > AB. The results suggest that conformational differences between homodimers and heterodimers strongly influence the EGCG binding ability. This may also occur with other polyphenols and ligands of β‐LG and gives not only important information for β‐LG binding studies, but may also apply for polymorphisms of other self‐aggregating lipocalins. Copyright © 2015 John Wiley & Sons, Ltd. 相似文献
208.
Samit Kumar Dutta Pedro Serrano Michael Geralt Herbert L. Axelrod Qingping Xu Scott A. Lesley Adam Godzik Ashley M. Deacon Marc‐André Elsliger Ian A. Wilson Kurt Wüthrich 《Protein science : a publication of the Protein Society》2015,24(10):1600-1608
Flavodoxins in combination with the flavin mononucleotide (FMN) cofactor play important roles for electron transport in prokaryotes. Here, novel insights into the FMN‐binding mechanism to flavodoxins‐4 were obtained from the NMR structures of the apo‐protein from Lactobacillus acidophilus (YP_193882.1) and comparison of its complex with FMN. Extensive reversible conformational changes were observed upon FMN binding and release. The NMR structure of the FMN complex is in agreement with the crystal structure (PDB ID: 3EDO ) and exhibits the characteristic flavodoxin fold, with a central five‐stranded parallel β–sheet and five α‐helices forming an α/β‐sandwich architecture. The structure differs from other flavoproteins in that helix α2 is oriented perpendicular to the β‐sheet and covers the FMN‐binding site. This helix reversibly unfolds upon removal of the FMN ligand, which represents a unique structural rearrangement among flavodoxins. 相似文献
209.
Hisashi Narimatsu 《Expert review of proteomics》2015,12(6):683-693
Many proteins in the living body are glycoproteins, which present glycans linked on their surface. Glycan structures reflect the degree of cell differentiation or canceration and are cell specific. These characteristics are advantageous in the development of various disease biomarkers. Glycoprotein-based biomarkers (glyco-biomarkers) are developed by utilizing the specific changes in the glycan structure on a glycoprotein secreted from the diseased cells of interest. Therefore, quantification of the altered glycan structures is the key to developing a new glyco-biomarker. Glycoscience is a relatively new area of molecular science, and recent advancement of glycotechnologies is remarkable. In the author’s institute, new glycoscience technologies have been designed to be efficiently utilized for the development of new diagnostic agents. This paper introduces a strategy for glyco-biomarker development, which was successfully applied in the development of Wisteria floribunda agglutinin-positive Mac-2 binding protein M2BPGi, a liver fibrosis marker now commercially available for clinical use. 相似文献
210.
目的:进一步比较化脓链球菌中野生型和Y137A、W204A突变型FtsB蛋白的铁色素结合特性,确定铁色素结合位点。方法:制备野生型和Y137A、W204A突变型FtsB蛋白,采用ICP-MS和ITC比较其铁色素结合能力;Na2SO4还原实验比较铁色素的还原速率;CD热变性和盐酸胍化学变性实验比较其铁色素结合稳定性。结果:Y137A、W204A突变型FtsB蛋白的铁色素结合能力和结合稳定性均低于野生型蛋白,铁色素的还原速率均高于野生型蛋白,可见Tyr137和Trp204是FtsB蛋白重要的铁色素结合位点。结论:进一步确定了Tyr137和Trp204氨基酸残基在FtsB与铁色素结合中的重要作用,为深入研究细菌中的铁色素转运机理及开发疫苗候选物奠定了一定的理论基础。 相似文献