首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1313篇
  免费   138篇
  国内免费   55篇
  1506篇
  2024年   6篇
  2023年   42篇
  2022年   60篇
  2021年   81篇
  2020年   54篇
  2019年   99篇
  2018年   77篇
  2017年   46篇
  2016年   67篇
  2015年   74篇
  2014年   121篇
  2013年   126篇
  2012年   56篇
  2011年   66篇
  2010年   55篇
  2009年   39篇
  2008年   64篇
  2007年   42篇
  2006年   50篇
  2005年   48篇
  2004年   49篇
  2003年   41篇
  2002年   32篇
  2001年   20篇
  2000年   10篇
  1999年   9篇
  1998年   10篇
  1997年   9篇
  1996年   8篇
  1995年   8篇
  1994年   6篇
  1993年   4篇
  1992年   2篇
  1991年   2篇
  1990年   2篇
  1989年   2篇
  1988年   1篇
  1987年   1篇
  1986年   1篇
  1985年   6篇
  1984年   1篇
  1983年   4篇
  1982年   2篇
  1981年   1篇
  1980年   1篇
  1977年   1篇
排序方式: 共有1506条查询结果,搜索用时 15 毫秒
971.
目的:研究缺血性心肌病大鼠心肌细胞自噬在心肌重塑中的作用。方法:36 只雄性SD大鼠分为正常对照组、假手术组、缺血性心肌病组( n=12),3组大鼠术前行心脏彩超检查,正常对照组大鼠不进行处理;假手术组大鼠开胸后不结扎冠状动脉,关闭胸腔;缺血性心肌病组大鼠开胸结扎冠状动脉20 min后,解开结扎线行再灌注后关闭胸腔,3组大鼠术后4周行心脏彩超检查后处死大鼠取心脏行HE染色、masson染色,观察心肌病理改变,用Western blot技术检测各组大鼠心肌细胞GRP78、LC3-I、LC3-II、Beclin-I表达及LC3-II/LC3-I比值的变化。结果:与正常组及假手术组比较,缺血性心肌病大鼠心室扩大,EF值降低;心肌排列紊乱,心肌纤维化增加;线粒体空泡化严重;内质网应激关键蛋白GRP78上调;自噬相关蛋白LC3-I、LC3-II、Beclin-I及LC3-II/LC3-I比值增加。结论:缺血性心肌病大鼠心肌细胞中内质网应激和自噬可能在心肌重塑中具有重要作用。  相似文献   
972.
Given the therapeutic efficacy of fasudil hydrochloride (F) and dichloroacetate (DCA) on pulmonary arterial hypertension (PAH), a new salt fasudil dichloroacetate (FDCA) was designed, synthesized and biologically evaluated. FDCA exhibited comparable ROCK II inhibitory activity relative to fasudil hydrochloride, and suppressed the expression of TNF-α and IL-6 in both PDGF-BB and hypoxia-treated pulmonary arterial smooth muscle cells (PASMCs) and endothelial cells (PAECs). Significantly, FDCA lowered mean pulmonary artery pressure (mPAP) and right ventricular systolic pressure (RVSP), and decreased right ventricular hypertrophy (RVH) in monocrotaline (MCT)-induced PAH rats. Meanwhile, FDCA remarkably decreased pulmonary artery medial thickness (PAMT) and hyperplasia, restoring the elasticity of elastic fiber, reduced cardiac hypertrophy, and attenuated fibrosis of heart and lung. Collectively, FDCA exhibited triple activities of pulmonary vasodilation, vascular remodeling inhibition and RVH inhibition, suggesting that it may be a promising agent for PAH intervention.  相似文献   
973.
974.
染色质装配、修饰和重塑复合体,以及它们和核小体、染色质等一起形成的超大分子复合体的精细结构解析,对于在原子水平揭示表观遗传信息建立、维持和调控的分子机制至关重要.近年来,迅速发展的冷冻电镜三维重构技术对于解析这些多亚基、大分子质量、柔性超大分子复合体的结构带来了很好的机遇.本文综述了冷冻电镜三维重构技术在表观遗传学相关的结构研究领域中的一些应用和进展.  相似文献   
975.
Chromatin organization is essential for coordinated gene expression, genome stability, and inheritance of epigenetic information. The main components involved in chromatin assembly are specific complexes such as Chromatin Assembly Factor 1 (CAF‐1) and Histone Regulator (HIR), which deposit histones in a DNA synthesis‐dependent or ‐independent manner, respectively. Here, we characterize the role of the plant orthologs Histone Regulator A (HIRA), Ubinuclein (UBN) and Calcineurin Binding protein 1 (CABIN1), which constitute the HIR complex. Arabidopsis loss‐of‐function mutants for the various subunits of the complex are viable, but hira mutants show reduced fertility. We show that loss of HIRA reduces extractable histone H3 protein levels and decreases nucleosome occupancy at both actively transcribed genes and heterochromatic regions. Concomitantly, HIRA contributes to maintenance of silencing of pericentromeric repeats and certain transposons. A genetic analysis based on crosses between mutants deficient in subunits of the CAF‐1 and HIR complexes showed that simultaneous loss of both the CAF‐1 and HIR histone H3 chaperone complexes severely affects plant survival, growth and reproductive development. Our results suggest that HIRA partially rescues impaired histone deposition in fas mutants to preserve nucleosome occupancy, implying plasticity in histone variant interaction and deposition.  相似文献   
976.

Background

Airway remodeling is a proposed mechanism that underlies the persistent loss of lung function associated with childhood asthma. Previous studies have demonstrated that human lung fibroblasts (HLFs) co-cultured with primary human bronchial epithelial cells (BECs) from asthmatic children exhibit greater expression of extracellular matrix (ECM) components compared to co-culture with BECs derived from healthy children. Myofibroblasts represent a population of differentiated fibroblasts that have greater synthetic activity. We hypothesized co-culture with asthmatic BECs would lead to greater fibroblast to myofibroblast transition (FMT) compared to co-culture with healthy BECs.

Methods

BECs were obtained from well-characterized asthmatic and healthy children and were proliferated and differentiated at an air-liquid interface (ALI). BEC-ALI cultures were co-cultured with HLFs for 96 hours. RT-PCR was performed in HLFs for alpha smooth muscle actin (α-SMA) and flow cytometry was used to assay for α-SMA antibody labeling of HLFs. RT-PCR was also preformed for the expression of tropomyosin-I as an additional marker of myofibroblast phenotype. In separate experiments, we investigated the role of TGFβ2 in BEC-HLF co-cultures using monoclonal antibody inhibition.

Results

Expression of α-SMA by HLFs alone was greater than by HLFs co-cultured with healthy BECs, but not different than α-SMA expression by HLFs co-cultured with asthmatic BECs. Flow cytometry also revealed significantly less α-SMA expression by healthy co-co-cultures compared to asthmatic co-cultures or HLF alone. Monoclonal antibody inhibition of TGFβ2 led to similar expression of α-SMA between healthy and asthmatic BEC-HLF co-cultures. Expression of topomyosin-I was also significantly increased in HLF co-cultured with asthmatic BECs compared to healthy BEC-HLF co-cultures or HLF cultured alone.

Conclusion

These findings suggest dysregulation of FMT in HLF co-cultured with asthmatic as compared to healthy BECs. Our results suggest TGFβ2 may be involved in the differential regulation of FMT by asthmatic BECs. These findings further illustrate the importance of BEC-HLF cross-talk in asthmatic airway remodeling.  相似文献   
977.
978.
Metabolism is closely linked with cellular state and biological processes, but the mechanisms controlling metabolic properties in different contexts remain unclear. Cellular senescence is an irreversible growth arrest induced by various stresses, which exhibits active secretory and metabolic phenotypes. Here, we show that retinoblastoma protein (RB) plays a critical role in promoting the metabolic flow by activating both glycolysis and mitochondrial oxidative phosphorylation (OXPHOS) in cells that have undergone oncogene‐induced senescence (OIS). A combination of real‐time metabolic monitoring, and metabolome and gene expression analyses showed that OIS‐induced fibroblasts developed an accelerated metabolic flow. The loss of RB downregulated a series of glycolytic genes and simultaneously reduced metabolites produced from the glycolytic pathway, indicating that RB upregulates glycolytic genes in OIS cells. Importantly, both mitochondrial OXPHOS and glycolytic activities were abolished in RB‐depleted or downstream glycolytic enzyme‐depleted OIS cells, suggesting that RB‐mediated glycolytic activation induces a metabolic flux into the OXPHOS pathway. Collectively, our findings reveal that RB essentially functions in metabolic remodeling and the maintenance of the active energy production in OIS cells.  相似文献   
979.
Aging is a major risk factor for cardiovascular disease. It has previously been shown that protein levels of cathepsin K, a lysosomal cysteine protease, are elevated in the failing heart and that genetic ablation of cathepsin K protects against pressure overload‐induced cardiac hypertrophy and contractile dysfunction. Here we test the hypothesis that cathepsin K knockout alleviates age‐dependent decline in cardiac function. Cardiac geometry, contractile function, intracellular Ca2+ properties, and cardiomyocyte apoptosis were evaluated using echocardiography, fura‐2 technique, immunohistochemistry, Western blot and TUNEL staining, respectively. Aged (24‐month‐old) mice exhibited significant cardiac remodeling (enlarged chamber size, wall thickness, myocyte cross‐sectional area, and fibrosis), decreased cardiac contractility, prolonged relengthening along with compromised intracellular Ca2+ release compared to young (6‐month‐old) mice, which were attenuated in the cathepsin K knockout mice. Cellular markers of senescence, including cardiac lipofuscin, p21 and p16, were lower in the aged‐cathepsin K knockout mice compared to their wild‐type counterpart. Mechanistically, cathepsin K knockout mice attenuated an age‐induced increase in cardiomyocyte apoptosis and nuclear translocation of mitochondrial apoptosis‐inducing factor (AIF). In cultured H9c2 cells, doxorubicin stimulated premature senescence and apoptosis. Silencing of cathepsin K blocked the doxorubicin‐induced translocation of AIF from the mitochondria to the nuclei. Collectively, these results suggest that cathepsin K knockout attenuates age‐related decline in cardiac function via suppressing caspase‐dependent and caspase‐independent apoptosis.  相似文献   
980.
目的:探讨茵陈蒿汤加减方对哮喘气道转化生长因子-β1(TGF-β1)的干预机制。方法:制备大鼠哮喘模型,模型动物随机分为四个组:模型组、西药(地塞米松)组、中药组,空白对照组,每组10只大鼠。从第17天起开始给予相应药液灌胃,西药组给予地塞米松1 g/kg,中药组给予茵陈蒿汤加减方配方颗粒溶液(浓度0.5 g/m L)5 m L/kg,每日1次。空白对照组和模型组分别以等量的生理盐水灌胃,每周按照大鼠体重调整1次。连续给药干预4周,检测血清中TGF-β1含量并进行比较分析。结果:中药组与西药组均可降低TGF-β1的含量,与模型组比较有显著性差异(P<0.01),中药组与西药组效果相当(P>0.05)。结论:茵陈蒿汤加减方能通过有效地减低大鼠血清中TGF-β1的含量,从而阻断气道重塑的发生,达到预防和缓解哮喘的治疗目的。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号