首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1314篇
  免费   137篇
  国内免费   55篇
  1506篇
  2024年   6篇
  2023年   42篇
  2022年   60篇
  2021年   81篇
  2020年   54篇
  2019年   99篇
  2018年   77篇
  2017年   46篇
  2016年   67篇
  2015年   74篇
  2014年   121篇
  2013年   126篇
  2012年   56篇
  2011年   66篇
  2010年   55篇
  2009年   39篇
  2008年   64篇
  2007年   42篇
  2006年   50篇
  2005年   48篇
  2004年   49篇
  2003年   41篇
  2002年   32篇
  2001年   20篇
  2000年   10篇
  1999年   9篇
  1998年   10篇
  1997年   9篇
  1996年   8篇
  1995年   8篇
  1994年   6篇
  1993年   4篇
  1992年   2篇
  1991年   2篇
  1990年   2篇
  1989年   2篇
  1988年   1篇
  1987年   1篇
  1986年   1篇
  1985年   6篇
  1984年   1篇
  1983年   4篇
  1982年   2篇
  1981年   1篇
  1980年   1篇
  1977年   1篇
排序方式: 共有1506条查询结果,搜索用时 15 毫秒
11.
Bone is a dynamic organ that is continuously turned over during growth, even in adults. During bone remodeling, homeostasis is regulated by the balance between bone formation by osteoblasts and bone resorption by osteoclasts. However, in pathological conditions such as osteoporosis, osteopetrosis, arthritic joint destruction, and bone metastasis, this equilibrium is disrupted. Since osteoclasts are excessively activated in osteolytic diseases, the inhibition of osteoclast function has been a major therapeutic strategy. It has recently been demonstrated that sphingosine-1-phosphate (S1P), a biologically active lysophospholipid that is enriched in blood, controls the trafficking of osteoclast precursors between the circulation and bone marrow cavities via G protein-coupled receptors, S1PRs. While S1PR1 mediates chemoattraction toward S1P in bone marrow, where S1P concentration is low, S1PR2 mediates chemorepulsion in blood, where the S1P concentration is high. The regulation of precursor recruitment may represent a novel therapeutic strategy for controlling osteoclast-dependent bone remodeling. By means of intravital multiphoton imaging of bone tissues, we have recently revealed that the reciprocal action of S1P controls the migration of osteoclast precursors between bone tissues and blood stream. Imaging technologies have enabled us to visualize the in situ behaviors of different cell types in intact tissues. In this review we also discuss future perspectives on this new method in the field of bone biology and medical sciences in general. This article is part of a Special Issue entitled Advances in Lysophospholipid Research.  相似文献   
12.
13.
The eukaryotic histone heterodimer H2A-H2B folds through an obligatory dimeric intermediate that forms in a nearly diffusion-limited association reaction in the stopped-flow dead time. It is unclear whether there is partial folding of the isolated monomers before association. To address the possible contributions of structure in the monomers to the rapid association, we characterized H2A and H2B monomers in the absence of their heterodimeric partner. By far-UV circular dichroism, the H2A and H2B monomers are 15% and 31% helical, respectively—significantly less than observed in X-ray crystal structures. Acrylamide quenching of the intrinsic Tyr fluorescence was indicative of tertiary structure. The H2A and H2B monomers exhibit free energies of unfolding of 2.5 and 2.9 kcal mol− 1, respectively; at 10 μM, the sum of the stability of the monomers is ∼ 60% of the stability of the native dimer. The helical content, stability, and m values indicate that H2B has a more stable, compact structure than H2A. The monomer m values are larger than expected for the extended histone fold motif, suggesting that the monomers adopt an overly collapsed structure. Stopped-flow refolding—initiated from urea-denatured monomers or the partially folded monomers populated at low denaturant concentrations—yielded essentially identical rates, indicating that monomer folding is productive in the rapid association and folding of the heterodimer. A series of Ala and Gly mutations were introduced into H2A and H2B to probe the importance of helix propensity on the structure and stability of the monomers. The mutational studies show that the central α-helix of the histone fold, which makes extensive intermonomer contacts, is structured in H2B but only partially folded in H2A.  相似文献   
14.
The dorsal air sacs supply oxygen to the flight muscles of the Drosophila adult. This tracheal organ grows from an epithelial tube (the air sac primordium (ASP)) that arises during the third larval instar (L3) from a wing-disc-associated tracheal branch. Since the ASP is generated by a program of both morphogenesis and cell proliferation and since the larval tracheal branches are populated by cells that are terminally differentiated, the provenance of its progenitors has been uncertain. Here, we show that, although other larval tracheae are remodeled after L3, most tracheal branches in the tracheal metamere associated with the wing disc (Tr2) are precociously repopulated with imaginal tracheoblasts during L3. Concurrently, the larval cells in Tr2 undergo head involution defective (hid)-dependent programmed cell death. In BX-C mutant larvae, the tracheal branches of the Tr3 metamere are also repopulated during L3. Our results show that repopulation of the larval trachea is a prerequisite for FGF-dependent induction of cell proliferation and tubulogenesis in the ASP and that homeotic selector gene function is necessary for the temporal and spatial control of tracheal repopulation.  相似文献   
15.
Cholinergic neurons in the CNS are involved in synaptic plasticity and cognition. Both muscarinic and nicotinic acetylcholine receptors (nAChRs) influence plasticity and cognitive function. The mechanism underlying nAChR‐induced plasticity, however, has remained elusive. Here, we demonstrate morphological changes in dendritic spines following activation of α4β2* nAChRs, which are expressed on glutamatergic pre‐synaptic termini of cultured hippocampal neurons. Exposure of the neurons to nicotine resulted in a lateral enlargement of spine heads. This was abolished by dihydro‐β‐erythroidine, an antagonist of α4β2* nAChRs, but not by α‐bungarotoxin, an antagonist of α7 nAChRs. Tetanus toxin or a mixture of 2‐amino‐5‐phosphonovaleric acid and 6‐cyano‐7‐nitroquinoxaline‐2,3‐dione, antagonists of NMDA‐ and AMPA‐type glutamate receptors, blocked the nicotine‐induced spine remodeling. In addition, nicotine exerted full spine‐enlarging response in the post‐synaptic neuron whose β2 nAChR expression was knocked down. Finally, pre‐treatment with nicotine enhanced the Ca2+‐response of the neurons to glutamate. These data suggest that nicotine influences the activity of glutamatergic neurotransmission through the activation of pre‐synaptic α4β2 nAChRs, resulting in the modulation of spinal architecture and responsiveness. The present findings may represent one of the cellular mechanisms underlying cholinergic tuning of brain function.

  相似文献   

16.
17.
18.
The plasma membrane of neurons consists of distinct domains, each of which carries specialized functions and a characteristic set of membrane proteins. While this compartmentalized membrane organization is essential for neuronal functions, it remains controversial how neurons establish these domains on the laterally fluid membrane. Here, using immunostaining, lipid-MS analysis and gene ablation with the CRISPR/Cas9 system, we report that the pancreatic lipase-related protein 2 (PLRP2), a phospholipase A1 (PLA1), is a key organizer of membrane protein localization at the neurite tips of PC12 cells. PLRP2 produced local distribution of 1-oleoyl-2-palmitoyl-PC at these sites through acyl-chain remodeling of membrane phospholipids. The resulting lipid domain assembled the syntaxin 4 (Stx4) protein within itself by selectively interacting with the transmembrane domain of Stx4. The localized Stx4, in turn, facilitated the fusion of transport vesicles that contained the dopamine transporter with the domain of the plasma membrane, which led to the localized distribution of the transporter to that domain. These results revealed the pivotal roles of PLA1, specifically PLRP2, in the formation of functional domains in the plasma membrane of neurons. In addition, our results suggest a mode of membrane organization in which the local acyl-chain remodeling of membrane phospholipids controls the selective localization of membrane proteins by regulating both lipid-protein interactions and the fusion of transport vesicles to the lipid domain.  相似文献   
19.
25 years after the nucleosome model: chromatin modifications   总被引:28,自引:0,他引:28  
  相似文献   
20.
目的:探讨结缔组织生长因子(CTGF)在慢性阻塞性肺疾病(COPD)血管重建中的表达及意义。方法:将30例有吸烟史的男性鳞癌需要手术的患者按其肺功能结果分成二组,对照组:(肺功能正常组);COPD稳定期组:(肺功能异常组),每组15例,标本来自于癌旁的肺组织,肺血管重塑的形态学观察行HE和MASSON三色染色,行免疫组化来观察CTGF蛋白、PCNA蛋白在肺血管平滑肌中的表达。结果:(1)COPD组肺动脉管壁面积/管总面积(WA%)、管壁的胶原厚度、肺动脉平滑肌中CTGF蛋白及PCNA蛋白的表达与对照组相比差异有统计学意义。(2)CTGF与管壁面积/管总面积(WA%)、管壁的胶原厚度及血管平滑肌中PCNA表达呈正相关(,r值分别为0.81、0.68、0.86,P<0.05)。吸烟指数与管壁面积/管总面积及PCNA的表达呈正相关(r=0.73,0.99,P<0.01)。结论:单纯吸烟者即有血管重建,吸烟伴COPD者血管重建更加严重,CTGF在COPD患者肺血管中的表达较对照组高,可能参与了COPD血管重建过程。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号