首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13118篇
  免费   748篇
  国内免费   483篇
  2023年   156篇
  2022年   223篇
  2021年   302篇
  2020年   291篇
  2019年   481篇
  2018年   478篇
  2017年   264篇
  2016年   279篇
  2015年   429篇
  2014年   712篇
  2013年   875篇
  2012年   526篇
  2011年   730篇
  2010年   612篇
  2009年   666篇
  2008年   735篇
  2007年   782篇
  2006年   707篇
  2005年   620篇
  2004年   457篇
  2003年   446篇
  2002年   423篇
  2001年   303篇
  2000年   261篇
  1999年   258篇
  1998年   240篇
  1997年   191篇
  1996年   197篇
  1995年   135篇
  1994年   153篇
  1993年   139篇
  1992年   131篇
  1991年   123篇
  1990年   101篇
  1989年   81篇
  1988年   84篇
  1987年   77篇
  1986年   62篇
  1985年   94篇
  1984年   80篇
  1983年   48篇
  1982年   82篇
  1981年   60篇
  1980年   52篇
  1979年   43篇
  1978年   38篇
  1977年   25篇
  1976年   19篇
  1975年   18篇
  1974年   23篇
排序方式: 共有10000条查询结果,搜索用时 9 毫秒
961.
Inferior olivary neurons (ION) migrate circumferentially around the caudal rhombencephalon starting from the alar plate to locate ventrally close to the floor-plate, ipsilaterally to their site of proliferation. The floor-plate constitutes a source of diffusible factors. Among them, netrin-1 is implied in the survival and attraction of migrating ION in vivo and in vitro. We have looked for a possible involvement of slit-1/2 during ION migration. We report that: (1) slit-1 and slit-2 are coexpressed in the floor-plate of the rhombencephalon throughout ION development; (2) robo-2, a slit receptor, is expressed in migrating ION, in particular when they reach the vicinity of the floor-plate; (3) using in vitro assays in collagen matrix, netrin-1 exerts an attractive effect on ION leading processes and nuclei; (4) slit has a weak repulsive effect on ION axon outgrowth and no effect on migration by itself, but (5) when combined with netrin-1, it antagonizes part of or all of the effects of netrin-1 in a dose-dependent manner, inhibiting the attraction of axons and the migration of cell nuclei. Our results indicate that slit silences the attractive effects of netrin-1 and could participate in the correct ventral positioning of ION, stopping the migration when cell bodies reach the floor-plate.  相似文献   
962.
The sea cucumber, Holothuria glaberrima, has the capacity to regenerate its internal organs. Intestinal regeneration is accomplished by the thickening of the mesenteric border and the invasion of this thickening by mucosal epithelium from the esophagus and the cloaca. Extracellular matrix (ECM) remodeling has been associated with morphogenetic events during embryonic development and regeneration. We have used immunohistochemical techniques against ECM components to show that differential changes occur in the ECM during early regeneration. Labeling of fibrous collagenous components and muscle-related laminin disappear from the regenerating intestine and mesentery, while fibronectin labeling and 4G7 (an echinoderm ECM component) are continuously present. Western blots confirm a decrease in fibrous collagen content during the first 2 weeks of regeneration. We have also identified five 1,10-phenanthroline-sensitive bands in collagen gelatin zymographs. The gelatinolytic activities of these bands are enhanced during early stages of regeneration, suggesting that the metalloprotease activity is associated with ECM remodeling. Inhibition of MMPs in vivo with 1,10-phenanthroline, p-aminobenzoyl-Gly-Pro-D-Leu-D-Ala hydroxamate or N-CBZ-Pro-Leu-Gly hydroxamate produces a reversible inhibition of intestinal regeneration and ECM remodeling. Our results show that significant changes in ECM content occur during intestine regeneration in the sea cucumber and that the onset of these changes is correlated to the proteolytic activities of MMPs.  相似文献   
963.
We have studied the in vivo function and tissue specificity of Dcas, the Drosophila ortholog of CAS, the importin beta-like export receptor for importin alpha. While dcas mRNA is specifically expressed in the embryonic central nervous system, Dcas protein is maternally supplied to all embryonic cells and its nuclear/cytoplasmic distribution varies in different tissues and times in development. Unexpectedly, hypomorphic alleles of dcas show specific transformations in mechano-sensory organ cell identity, characteristic of mutations that increase Notch signaling. Dcas is essential for efficient importin-alpha3 nuclear export in mechano-sensory cells and the surrounding epidermal cells and is indirectly required for the import of one component of the Notch pathway, but not others tested. We interpret the specificity of the dcas phenotype as indicating that one or more Notch signaling components are particularly sensitive to a disruption in nuclear protein import. We propose that mutations in house keeping genes often cause specific developmental phenotypes, such as those observed in many human genetic disorders.  相似文献   
964.
Accelerated molecular evolution in halophilic crustaceans   总被引:8,自引:0,他引:8  
In contrast to the stable ionic composition of the oceans, inland waters show striking diversity, possessing salt concentrations varying from I mM to 5 M. Although species diversity is highest in fresh water, some lineages have colonized hypersaline environments where they encounter elevated levels of both ultraviolet (UV) radiation and osmotic stress. This study compares rates of evolution in halophilic and freshwater taxa for two groups of microcrustaceans, anostracans and daphniids, from Australia and North America. The results establish that halophilic species show consistent rate acceleration, involving elevated levels of both insertion/deletion events and of nucleotide substitutions. The elevated pace of molecular evolution does not appear to be linked to selection or to other agents that are known to influence the supply rate of mutations, such as UV exposure, generation length, or shifts in metabolic rate. However, variance in ionic strength, which is known to have potent effects on DNA-protein interactions as well as on the structural properties of DNA and proteins, might account for the lowered fidelity of DNA replication in life from hypersaline settings. Regardless of its cause, the consistent rate acceleration in halophiles suggests that past efforts to employ sequence divergences to date events, such as the age of asexual lineages in Artemia, have resulted in serious overestimates. More generally, the results indicate that coordinated shifts in rates of molecular evolution may occur in lineages exposed to extreme environmental conditions.  相似文献   
965.
Precise subcellular localization is an important factor in regulation of the functions of protein tyrosine phosphatases. The non-receptor form of protein tyrosine phosphatase epsilon (cyt-PTP(epsilon)) can be found in cell nuclei, among other cellular locations, while p67 PTP(epsilon), a naturally occurring isoform which lacks the 27 N terminal residues of cyt-PTP(epsilon), is exclusively cytosolic. Using deletion and scanning mutagenesis we report that the first 10 amino acid residues of cyt-PTP(epsilon), in particular residues R4, K5, and R9, are critical components for its nuclear localization. We also establish that increased oxidative stress enhances accumulation of cyt-PTP(epsilon) in cell nuclei. Of the four known protein forms of PTP(epsilon), cyt-PTP(epsilon) is the only one which includes the extreme N-terminal sequence containing R4, K5, and R9. The role of the unique N terminus of cyt-PTP(epsilon) is therefore to regulate its subcellular localization. The existence of naturally occurring forms of PTP(epsilon) which lack this sequence and which are generated by translational and posttranslational mechanisms, suggests that nuclear localization of cyt-PTP(epsilon) can be actively regulated by cells.  相似文献   
966.
Nuclear gangliosides were characterized using two distinct fractions of large (N1) and small (N2) nuclear populations from rat brain. The ganglioside concentration of N1 nuclei from adult rat brain was 0.92 microg sialic acid/mg protein, which was about 3.8 times higher than that of N2 nuclei. N1 and N2 nuclear gangliosides showed similar compositional profiles; they contained major gangliosides of GM1, GD1a, GD1b, and GT1b, with GM3 in lesser amounts. c-Series gangliosides such as GT3, GQ1c, and GP1c were also detected in both nuclear preparations. Nuclear localization of gangliosides was confirmed by immunofluorescence with anti-GM1 antibody, cholera toxin B subunit, and c-series ganglioside-specific monoclonal antibody A2B5. Developmental changes of nuclear gangliosides were examined using rats of different ages ranging from embryonic day 14 (E14) to postnatal 7 weeks. The concentration of N1 nuclear gangliosides changed only slightly during development and did not correlate with that of whole-brain gangliosides. The developmental pattern of ganglioside composition of N1 nuclei was also distinguished from that of microsomal membranes; the ganglioside changes in N1 nuclei included reduced expression of di- and polysialogangliosides at E16 and higher proportions of GM3 at early and late stages of the period. These findings suggest that gangliosides in nuclear membranes are developmentally regulated in a distinct manner in brain cells.  相似文献   
967.
Based on previous studies of interleukin-1beta (IL-1beta) and both acidic and basic fibroblast growth factors (FGFs), it has been suggested that the folding of beta-trefoil proteins is intrinsically slow and may occur via the formation of essential intermediates. Using optical and NMR-detected quenched-flow hydrogen/deuterium exchange methods, we have measured the folding kinetics of hisactophilin, another beta-trefoil protein that has < 10% sequence identity and unrelated function to IL-1beta and FGFs. We find that hisactophilin can fold rapidly and with apparently two-state kinetics, except under the most stabilizing conditions investigated where there is evidence for formation of a folding intermediate. The hisactophilin intermediate has significant structural similarities to the IL-1beta intermediate that has been observed experimentally and predicted theoretically using a simple, topology-based folding model; however, it appears to be different from the folding intermediate observed experimentally for acidic FGF. For hisactophilin and acidic FGF, intermediates are much less prominent during folding than for IL-1beta. Considering the structures of the different beta-trefoil proteins, it appears that differences in nonconserved loops and hydrophobic interactions may play an important role in differential stabilization of the intermediates for these proteins.  相似文献   
968.
Heteronuclear NMR spectroscopy was performed to determine the solution structure of (15)N-labeled ferrocytochrome c(3) from Desulfovibrio vulgaris Miyazaki F (DvMF). Although the folding of the reduced cytochrome c(3) in solution was similar to that of the oxidized one in the crystal structure, the region involving hemes 1 and 2 was different. The redox-coupled conformational change is consistent with the reported solution structure of D. vulgaris Hildenborough ferrocytochrome c(3), but is different from those of other cytochromes c(3). The former is homologous with DvMF cytochrome c(3) in amino acid sequence. Small displacements of hemes 1 and 2 relative to hemes 3 and 4 were observed. This observation is consistent with the unusual behavior of the 2(1)CH(3) signal of heme 3 reported previously. As shown by the (15)N relaxation parameters of the backbone, a region between hemes 1 and 2 has more flexibility than the other regions. The results of this work strongly suggest that the cooperative reduction of hemes 1 and 2 is based on the conformational changes of the C-13 propionate of heme 1 and the aromatic ring of Tyr43, and the interaction between His34 and His 35 through covalent and coordination bonds.  相似文献   
969.
Organisation of the cell nucleus is crucial for the regulation of gene expression but little is known about how nuclei are structured. To address this issue, we designed a genomic screen to identify factors involved in nuclear architecture in Saccharomyces cerevisiae. This screen is based on microscopic monitoring of nuclear pore complexes and nucleolar proteins fused with the green fluorescent protein in a collection of approximately 400 individual deletion mutants. Among the 12 genes identified by this screen, most affect both the nuclear envelope and the nucleolar morphology. Corresponding gene products are localised preferentially to the nucleus or close to the nuclear periphery. Interestingly, these nuclear morphology alterations were associated with chromatin-silencing defects. These genes provide a molecular context to explore the functional link between nuclear architecture and gene silencing.  相似文献   
970.
Brevican is a neural-specific proteoglycan of the brain extracellular matrix, which is particularly abundant in the terminally differentiated CNS. It is expressed by neuronal and glial cells, and as a component of the perineuronal nets it decorates the surface of large neuronal somata and primary dendrites. One brevican isoform harbors a glycosylphosphatidylinositol anchor attachment site and, as shown by ethanolamine incorporation studies, is indeed glypiated in stably transfected HEK293 cells as well as in oligodendrocyte precursor Oli-neu cells. The major isoform is secreted into the extracellular space, although a significant amount appears to be tightly attached to the cell membrane, as it floats up in sucrose gradients. Flotation is sensitive to detergent treatment. Brevican is most prominent in the microsomal, light membrane and synaptosomal fractions of rat brain membrane preparations. The association with the particulate fraction is in part sensitive to chondroitinase ABC and phosphatidylinositol-specific phospholipase C treatment. Furthermore, brevican staining on the surface of hippocampal neurons in culture is diminished after hyaluronidase or chondroitinase ABC treatment. Taken together, this could provide a mechanism by which perineuronal nets are anchored on neuronal surfaces.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号