首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2519篇
  免费   67篇
  国内免费   141篇
  2023年   16篇
  2022年   21篇
  2021年   30篇
  2020年   30篇
  2019年   43篇
  2018年   36篇
  2017年   33篇
  2016年   45篇
  2015年   52篇
  2014年   68篇
  2013年   97篇
  2012年   49篇
  2011年   83篇
  2010年   56篇
  2009年   92篇
  2008年   105篇
  2007年   96篇
  2006年   105篇
  2005年   122篇
  2004年   105篇
  2003年   90篇
  2002年   86篇
  2001年   89篇
  2000年   63篇
  1999年   77篇
  1998年   81篇
  1997年   69篇
  1996年   58篇
  1995年   71篇
  1994年   56篇
  1993年   71篇
  1992年   60篇
  1991年   55篇
  1990年   47篇
  1989年   56篇
  1988年   44篇
  1987年   46篇
  1986年   46篇
  1985年   32篇
  1984年   49篇
  1983年   39篇
  1982年   40篇
  1981年   29篇
  1980年   26篇
  1979年   26篇
  1978年   12篇
  1977年   11篇
  1976年   7篇
  1975年   2篇
  1973年   3篇
排序方式: 共有2727条查询结果,搜索用时 15 毫秒
181.
AmpD is a bacterial amidase involved in the recycling of cell-wall fragments in Gram-negative bacteria. Inactivation of AmpD leads to derepression of beta-lactamase expression, presenting a major pathway for the acquisition of constitutive antibiotic resistance. Here, we report the NMR structure of AmpD from Citrobacter freundii (PDB accession code 1J3G). A deep substrate-binding pocket explains the observed specificity for low molecular mass substrates. The fold is related to that of bacteriophage T7 lysozyme. Both proteins bind zinc at a conserved site and require zinc for amidase activity, although the enzymatic mechanism seems to differ in detail. The structure-based sequence alignment identifies conserved features that are also conserved in the eukaryotic peptidoglycan recognition protein (PGRP) domains, including the zinc-coordination site in several of them. PGRP domains thus belong to the same fold family and, where zinc-binding residues are conserved, may have amidase activity. This hypothesis is supported by the observation that human serum N-acetylmuramyl-L-alanine amidase seems to be identical with a soluble form of human PGRP-L.  相似文献   
182.
A full-length cDNA encoding D-amino acid oxidase (DAO, EC 1.4.3.3) was cloned and sequenced from the hepatopancreas of carp fed a diet supplemented with D-alanine. This clone contained an open reading frame encoding 347 amino acid residues. The deduced amino acid sequence exhibited about 60 and 19-29% identity to mammalian and microbial DAOs, respectively. The expression of full-length carp DAO cDNA in Escherichia coli resulted in a significant level of protein with DAO activity. In carp fed the diet with D-alanine for 14 days, DAO mRNA was strongly expressed in intestine followed by hepatopancreas and kidney, but not in muscle. During D-alanine administration, DAO gene was expressed quickly in hepatopancreas with the increase of DAO activity. The inducible nature of carp DAO indicates that it plays an important physiological role in metabolizing exogenous D-alanine that is abundant in their prey invertebrates, crustaceans, and mollusks.  相似文献   
183.
184.
Pl-nectin is an ECM protein located on the apical surface of ectoderm cells of Paracentrotus lividus sea urchin embryo. Inhibition of ECM-ectoderm cell interaction by the addition of McAb to Pl-nectin to the culture causes a dramatic impairment of skeletogenesis, offering a good model for the study of factor(s) involved in skeleton elongation and patterning. We showed that skeleton deficiency was not due to a reduction in the number of PMCs ingressing the blastocoel, but it was correlated with a reduction in the number of Pl-SM30-expressing PMCs. Here, we provide evidence on the involvement of growth factor(s) in skeleton morphogenesis. Skeleton-defective embryos showed a strong reduction in the levels of expression of Pl-univin, a growth factor of the TGF-beta superfamily, which was correlated with an equivalent strong reduction in the levels of Pl-SM30. In contrast, expression levels of Pl-BMP5-7 remained low and constant in both skeleton-defective and normal embryos. Microinjection of horse serum in the blastocoelic cavity of embryos cultured in the presence of the antibody rescued skeleton development. Finally, we found that misexpression of univin is also sufficient to rescue defects in skeleton elongation and SM30 expression caused by McAb to Pl-nectin, suggesting a key role for univin or closely related factor in sea urchin skeleton morphogenesis.  相似文献   
185.
Biopharmaceuticals intended for humans are immunogenic in animals. Antibodies associated with their administration make it difficult to perform repeated-dose pharmacology and toxicology studies in animals. Despite suggestions to solve this problem with transgenic animal technology, an effective strategy has not yet been reported. The objective of the present study was to provide an efficient strategy to develop rats tolerant to biopharmaceuticals such as human gene-based proteins. The present study used transgenic rat lines (lines 311-6, 308-5, and 305-1) carrying a fusion gene designed to express the human growth hormone (hGH) gene under the control of the bovine S1 casein gene promoter. Three lactating females with the transgene, produced approximately 4mg/ml, 300g/ml, and 10ng/ml in their milk. Male 8-week-old rats from these three lines were immunized with hGH three times (week 0, 1, and 3 ) and the production of antibodies against hGH in their sera were examined at week 4. While the hGH serum antibody titers increased over 1000-fold in wild-type control rats, there was no detectable antibody against hGH in the sera of these three transgenic lines. Human growth hormone in their sera was undetectable (lines 308-5 and 305-1) or much lower than the endogenous biologic level of rat growth hormone (line 311-6). Importantly, lines 308-5 and 305-1 developed tolerance to hGH without detectable hGH in their sera and these lines will be very useful for the repeated dose pharmacology and toxicology studies. These results suggest that a milk protein promoter can be a useful tool to develop transgenic rats that are tolerant to biopharmaceuticals intended for humans.  相似文献   
186.
187.
Mechanism of fenretinide (4-HPR)-induced cell death   总被引:7,自引:0,他引:7  
4-HPR (fenretinide) is a synthetic analog of retinoic acid (RA) whose potential as a chemopreventative agent has gained support from in vitro and animal experiments and in limited clinical trials. Comparative analyses of cellular, biochemical, and molecular properties of fenretinide with RA using various tissue culture cells reveal that a key distinction between these two retinoids lies in the ability of fenretinide to induce programmed cell death, also known as apoptosis. Here we review the composite evidence for induction of apoptosis in fenretinide-treated cells. Assays used to validate apoptosis in various cell types are also summarized. Apoptosis in response to fenretinide primarily occurs by a receptor-independent mechanism, which is accompanied by increases in signaling molecules, e.g., ceramide, and cysteine-dependent aspartate-directed proteases, termed caspases, including execution caspase-3. Both caspase-3 inhibitor DEVD-CHO and ceramide synthase inhibitor fumonisin B1 (FB1) block fenretinide-induced apoptosis. Increase in caspase-3 appears to result from fenretinide-elicited stabilization of procaspase-3 zymogen. We also review apoptotic regulatory proteins such as inhibitor of apoptosis (IAPs) and second mitochondria-derived activator of caspase (SMACs) that participate in the coordinate control of caspase activities. The existence of a large number of proteins capable of modulating apoptosis via activation or inhibition of caspases, coupled with the fact that both the initiation and execution phases of apoptosis utilize pre-existing zymogens, which, once set in motion, culminates in an irreversible apoptotic cascade, raise the possibility that the on/off switch of apoptosis is linked to an intricate intracellular regulatory network, capable of responding to external stimuli such as fenretinide. This network functions to provide checks/balances of the need for apoptosis as well as to minimize and prevent untimely errors in apoptosis. We suggest that dynamic and coordinated regulation of apoptosis by such a hypothetical network in vivo may involve co-localization of pro- and anti-apoptotic proteins and their respective activators/inhibitors in a macromolecular modular unit which we propose to be named caspasomes. Fenretinide also induces apoptosis by elevating reactive oxygen species (ROS), unrelated to changes in ceramide-caspases. Thus multiple, distinct pathways contribute to the induction of apoptosis by fenretinide.  相似文献   
188.
Smad6 and Smad7 comprise a subclass of vertebrate Smads that antagonize, rather than transduce, TGF-β family signaling. These Anti-Smads can block BMP signaling, as evidenced by their ability to induce a secondary dorsal axis when misexpressed ventrally in Xenopus embryos. Smad7 inhibits additional TGF-β related pathways, and causes spina bifida when misexpressed dorsally. We have performed structure-function analyses to identify domains of Anti-Smads that are responsible for their shared and unique activities. We find that the C-terminal domain of Smad7 displays strong axis inducing activity but cannot induce spina bifida. The isolated N-terminal domain of Smad7 is inactive but restores the ability of the C-terminus to cause spina bifida when the two are co-expressed. By contrast, the N- and C-terminal domains of Smad6 have weak axis inducing activity when expressed individually, but show full activity when co-expressed. Chimeric analysis demonstrates that the C-terminal domain of Smad7, but not Smad6, can induce spina bifida when fused to the N-terminal domain of either Smad6 or Smad7. Thus, although the C-terminal domain is the primary determinant of the intrinsic activity of Xenopus Anti-Smads, the N-terminal domain is essential for full activity, is interchangeable between Smad6 and 7, and can function in trans.  相似文献   
189.
190.
Many members of the spiralian phyla (i.e., annelids, echiurans, vestimentiferans, molluscs, sipunculids, nemerteans, polyclad turbellarians, gnathostomulids, mesozoans) exhibit early, equal cleavage divisions. In the case of the equal-cleaving molluscs, animal-vegetal inductive interactions between the derivatives of the first quartet micromeres and the vegetal macromeres specify which macromere becomes the 3D cell during the interval between fifth and sixth cleavage. The 3D macromere serves as a dorsal organizer and gives rise to the 4d mesentoblast. Even though it has been argued that this situation represents the ancestral condition among the Spiralia, these inductive events have only been documented in equal-cleaving molluscs. Embryos of the nemertean Cerebratulus lacteus also undergo equal, spiral cleavage, and the fate map of these embryos is similar to that of other spiralians. The role of animal first quartet micromeres in the establishment of the dorsal (D) cell quadrant was examined in C. lacteus by removing specific combinations of micromeres at the eight-cell stage. To follow the development of various cell quadrants, one quadrant was labeled with DiI at the four-cell stage, and specific first quartet micromeres were removed from discrete positions relative to the location of the labeled quadrant. The results indicate that the first quartet is required for normal development, as removal of all four micromeres prevented dorsoventral axis formation. In most cases, when either one or two adjacent first quartet micromeres were removed from one side of the embryo, the cell quadrant on the opposite side, with its macromere centered under the greatest number of the remaining animal micromeres, ultimately became the D quadrant. Twins containing duplicated dorsoventral axes were generated by removal of two opposing first quartet micromeres. Thus, any cell quadrant can become the D quadrant, and the dorsoventral axis is established after the eight-cell stage. While it is not yet clear exactly when key inductive interactions take place that establish the D quadrant in C. lacteus, contacts between the progeny of animal micromeres and vegetal macromeres are established during the interval between the fifth and sixth round of cleavage divisions (i.e., 32- to 64-cell stages). These findings argue that this mechanism of cell and axis determination has been conserved among equal-cleaving spiralians.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号