The effect of the antibiotics thiostrepton and micrococcin on EF-Tu-catalyzed (ribosome-dependent) GTP hydrolysis in the presence of A-Phe, C-A-Phe, or C-C-A-Phe (related to the sequence of the 3′-terminus of aminoacyl-tRNA)(System I) or by methanol (‘uncoupled GTPase’, System II) was investigated. In System I, thiostrepton increases the binding affinities of the effectors to the EF-Tu·GTP·70 S ribosome complex, as well as the extent of the GTP hydrolysis, while the KGTPm is virtually unchanged. Similarly, in the uncoupled system (System II) and in the absence of effectors, thiostrepton significantly increases VGTPmax, whereas KGTPm remains unaffected. Micrococcin is without any effect in both systems. The ‘uncoupled GTPase’ (in System II) is also strongly inhibited by C-A-Phe. The results indicate the crucial role of the EF-Tu site which binds the aminoacylated C-C-A terminus of aminoacyl-tRNA in promoting GTP hydrolysis. It follows that the binding of the model effectors (such as C-C-A-Phe) to that site is favorably influenced by the interaction of thiostrepton with the 50 S ribosomal subunit, whereas thiostrepton, per se, does not influence the affinity of EF-Tu for GTP. 相似文献
The effect of temperature on the maximum specific growth rate and the cell yield was studied during cultivation of two bacterial strains (LPM-4 and Pseudomonas sp. LPM-410) on EDTA under unlimited cell growth conditions in a pH-auxostat. Both strains displayed linear dependence of reciprocal biomass yield against reciprocal specific growth rate, from which the values of rate of substrate expenditure for cell maintenance and the “maximum” yield (i.e., hypothetical yield without cell maintenance processes) were estimated. Analysis of the maximum yield values based on mass–energy balance theory suggested that oxidation of the carboxylic acid side chains of EDTA by a monooxygenase had zero or low energetic efficiency. An Arrhenius equation with different values of Arrhenius parameters within different temperature ranges gave a good fit with the temperature dependence of both growth rate and biomass yield. Specific growth rates of both strains showed a more pronounced temperature dependence than did the cell yields. A possible kinetic mechanism was suggested which might be responsible for the modes of the temperature dependences of specific growth rate and yield that were found. The mechanism is based on a hypothetical key substance governing the metabolic flows, which is formed in a zero-order reaction and destroyed in a first-order reaction, both rate constants depending on temperature according to the Arrhenius law. 相似文献
The formation of R-prime plasmids was selected in crosses involving soybean microsymbionts with genomic Tn5 insertions and carrying plasmid pJB3JI (with one IS2) copy as donors and Escherichia coli HB101 as recipient. Whereas the parent plasmid was 60 kb, recombinant plasmids between 76 kb and 121 kb were obtained. Restriction and Southern analyses confirmed the mobilization of Tn5 on four R-primes from Bradyrhizobium japonicum I-110 and on an R-prime plasmid from Rhizobium fredii HH303. The largest R-prime plasmid was obtained from the rescue of two symbiotically defective R. fredii mutant strains that required adenosine.Non-standard abbreviation TDP
transposon donor pool
Scientific article number A-4728 and contribution number 7724 of the Maryland Agricultural Experiment Station 相似文献
Over 80% of the values of approximate digestibility (AD), efficiency of conversion of assimilated food to biomass (ECD) and efficiency of conversion of ingested food (ECI) calculated using energy terms are greater than the corresponding dry weight (DW) values, based on data for over 65 species (38 studies; number of comparative values: AD=139, ECD=128 and ECI=169). Largest positive differences (energy > DW values) are 30 (AD, ECD) and 24 (ECI) percentage points and largest negative differences (energy < DW values) are 9 (AD), 11 (ECD) and 8 (ECI) percentage points. These differences generally are least for ECI (71% of the differences fall between 0 and +5 percentage points), and AD (68%), followed by ECD (only 47% fall between 0 and +5), and they may vary with temperature, food and other factors. The differences tend to increase (esp. for ECD and ECI) when comparing later with earlier instars. Energy > DW efficiency values are commonly expected for AD because of the generally greater energy content of food than feces, and for ECD and ECI because of the generally greater energy content of insect biomass than ingested and assimilated food. Deviations from predicted differences in surveyed literature data are discussed in terms of possible methodological sources of error.
Résumé Plus de 80% des valeurs de la digestibilité approchée (AD), de l'efficacité de la conversion de la nourriture assimilée en biomasse (ECD) et de l'efficacité de la conversion de l'aliment ingéré (ECI), calculées en termes énergétiques, et obtenus à partir de données sur 65 espèces, sont supérieures aux valeurs des poids secs correspondants (DW): 38 études; valeurs comparatives: AD=139, ECD=128, ECI=169. Les plus importantes différences positive (énergie>valuers DW) sont de 30 (AD, ECD) et de 24 (ECI) centièmes (les différences négatives les plus fortes = 9 (AD), 11 (ECD) et 8 (ECI); ces différences sont moindres pour ECI (71% des différences tombent à 0 et +5 centièmes), et AD (68%), suivi de ECD (seulement 47% tombent entre 0 et +5). Ces différences peuvent varier avec la température, l'alimentation et d'autres facteurs; les différences tendent à croître (particulièrement pour ECD et ECI) quant on les compare plus tard avec des stades plus précoces. Energie > aux valeurs d'efficacité DW sont généralement attendues pour AD par suite du contenu énergétique supérieur de l'aliment à celui des excréments, et pour ECD et ECI par suite du contenu énergétique généralement plus élevé pour la biomasse de l'insecte que pour l'aliment ingéré et assimilé. Les écarts par rapport aux différences prédites dans les données de la littérature examinée sont analysées en considérant les sources possibles d'erreurs méthodologiques.
Food intake was restricted to 75% of ad libitum levels in 37 male Psammomys obesus (Israeli Sand Rats) from the ages of 4 (weaning) to 10 weeks. Energy restriction reduced the mean body weight at 10 weeks by 29% compared with 44 ad libitum fed controls. Hyperglycemia was prevented completely in the food-restricted group, and mean blood glucose concentrations were significantly reduced (3.8 ± 0.2 vs. 5.5 ± 0.4 μmol/L; p<0.05) compared with control animals. Plasma insulin concentrations were also decreased significantly compared with ad libitum fed controls (105 ± 13 vs. 241 ± 29 mU/L;p<0.05). Although energy restriction prevented hyperglycemia from developing in 10-week-old P. obesus, 19% of the food restricted animals still developed hyperinsu-linemia. We concluded that hyperphagia between the ages of 4 to 10 weeks may be essential for the development of noninsulin-dependent diabetes mellitus in P. obesus, but that hyperinsulinemia may still occur in the absence of hyperphagia and hyperglycemia, suggesting a significant genetic influence on the development of hyperinsulinemia in this animal model. 相似文献
Two glutamic acid-rich fusion peptide analogs of influenza hemagglutinin were synthesized to study the organization of the charged peptides in the membranous media. Fluorescence and gel electrophoresis experiments suggested a loose association between the monomers in the vesicles. A model was built which showed that a positional difference of 3, 7 and 4, 8 results in the exposure of Glu3 and Glu7 side chains to the apolar lipidic core. Supportive results include: first, pKa values of two pH units higher than reference value in aqueous medium for Glu3 and Glu7 CγH, whereas the deviation of pKa from the reference value for Glu4 and Glu8 CγH is substantially smaller; second, Hill coefficients of titration shift of these protons indicate anti-cooperativity for Glu3 and Glu7 side chain protons but less so for Glu4 and Glu8, implying a strong electrostatic interaction between Glu3 and Glu7 possibly resulting from their localization in an apolar environment; third, positive and larger titration shift for NH of Glu3 is observed compared to that of Glu4, suggesting stronger hydrogen bond between the NH and the carboxylic group of Glu3 than that of Glu4, consistent with higher degree of exposure to hydrophobic medium for the side chain of Glu3. 相似文献
1. 1.In young pigs living at 35 or 10°C on a high or low energy intake, respiratory enzyme activities in longissimus dorsi muscle were greater both in the cold and on low intake. The elevated activities in the cold were unlikely to be related entirely to shivering since they were also found in muscle from the diaphragm.
2. 2.In a second study, pigs were kept close to thermal neutrality (26°C) on different levels of food intake and for different periods of time. For all animals, as body weight increased there was a decline in respiratory enzyme activity and the number of dark fibres in skeletal muscle. For those of the same weight, but different age and food intake, there was no difference in enzyme activity or number of dark fibres per unit area.
3. 3.At least part of the difference in respiratory enzyme activities related to energy intake must therefore be due to differences in body size. However, size is not the sole determinant of enzyme activity in skeletal muscle, since in animals of similar size those living at 10°C have greater enzyme activities than those at 35°C.
rap-1A, an anti-oncogene-encoded protein, is aras-p21-like protein whose sequence is over 80% homologous to p21 and which interacts with the same intracellular target proteins and is activated by the same mechanisms as p21, e.g., by binding GTP in place of GDP. Both interact with effector proteins in the same region, involving residues 32–47. However, activated rap-1A blocks the mitogenic signal transducing effects of p21. Optimal sequence alignment of p21 and rap-1A shows two insertions of rap-1A atras positions 120 and 138. We have constructed the three-dimensional structure of rap-1A bound to GTP by using the energy-minimized three-dimensional structure ofras-p21 as the basis for the modeling using a stepwise procedure in which identical and homologous amino acid residues in rap-1A are assumed to adopt the same conformation as the corresponding residues in p21. Side-chain conformations for homologous and nonhomologous residues are generated in conformations that are as close as possible to those of the corresponding side chains in p21. The entire structure has been subjected to a nested series of energy minimizations. The final predicted structure has an overall backbone deviation of 0.7 å from that ofras-p21. The effector binding domains from residues 32–47 are identical in both proteins (except for different side chains of different residues at position 45). A major difference occurs in the insertion region at residue 120. This region is in the middle of another effector loop of the p21 protein involving residues 115–126. Differences in sequence and structure in this region may contribute to the differences in cellular functions of these two proteins. 相似文献
The magnitudes of inter-chromophore interactions in bacterial photosynthetic reaction centers are investigated by measuring absorption and Stark spectra of reaction centers in which monomeric chromophores are modified and in a novel triplet mutant which lacks the special pair. The circular dichroism spectrum of the triple mutant reaction center was also measured. Only small changes in the spectroscopic properties are observed, as has also been found for several types of reaction centers in which the absorption or chemical properties of a chromophore are altered by site-specific mutations. We conclude that the electronic absorption, circular dichroism and Stark features of the special pair and the monomeric chromophores in the reaction center are relatively insensitive to inter-chromophore interactions. 相似文献
The photoacoustic (PA) characteristics (energy storage and heat dissipation) of photosystem II (PSII) core-enriched particles from barley were studied (i) in conditions where there was electron flow, i.e., in the presence of a combination of the electron acceptor K3 Fe (CN)6, referred to as FeCN, and the electron donor diphenylcarbazide (DPC), and (ii) in conditions where electron flow was suppressed, i.e., in the absence of FeCN and DPC. The experimental data show that a decrease of heat dissipation with a minimum at 540 nm can be interpreted as energy storage resulting from the presence of pheophytin (Pheo) in the PSII particles. On account of the capability of the PA method to measure the energy absorbed by the chromophores which is converted to heat, it is suggested that the PA detection of Pheo present in the PSII complex will permit to clarify the function of processes involving non-radiative relaxation of excited states in P680-Pheo-QA interactions.Abbreviations -Car
-Carotene
- Chl
Chlorophyll
- DPC
Diphenylcarbazide
- EPR
Electron Paramagnetic Resonance
- FeCN
potassium ferricyanide
- HEPES
N-2-hydroxyethylenepiperazine-N-2-ethanesulfonate
- P680
reaction center of PSII
- PA
Photoacoustic
- Pheo
pheophytin
- PSI
photosystem I
- PSII
photosystem II
- QA
primary electron acceptor of PSII 相似文献